\( \def\XC{\mathcal{X}} \def\RC{\mathcal{R}} \def\RE{\mathbb{R}} \def\CC{\mathbb{C}} \def\TR{\text{T}} \def\CO{\text{conv}} \def\bmat{\left[\begin{matrix}} \def\emat{\end{matrix}\right]} \def\bmatp{\left(\begin{matrix}} \def\ematp{\end{matrix}\right)} \def\bsmat{\left[\begin{smallmatrix}} \def\esmat{\end{smallmatrix}\right]} \)

PWATOOLS

A MATLAB Toolbox for Piecewise-Affine Controller Synthesis


M. Zamani, B. Samadi and L. Rodrigues


HYCONS Lab, Concordia University


American Control Conference


Montreal, Quebec


June 2012

Outline

Motivation

For controller design, consider the following issues:

PWA Systems

Piecewise Smooth Systems

The dynamics of a piecewise smooth (PWS) is defined as:

\begin{equation*} \dot x=f_i(x),\ x\in\RC_i \end{equation*}

where \(x\in\XC\) is the state vector. A subset of the state space \(\XC\) is partitioned into \(M\) regions, \(\RC_i, i=1,\ldots,M\) such that:

\begin{equation*} \cup_{i=1}^M \bar\RC_i=\XC,\ \RC_i\cap\RC_j=\emptyset,\ i\neq j \end{equation*}

where \(\bar\RC_i\) denotes the closure of \(\RC_i\) .

PWA Systems

PWA Systems

The dynamics of a piecewise affine (PWA) is defined as:

\begin{equation*} \dot x=A_ix+a_i+B_iu,\ x\in\RC_i \end{equation*}

where

\begin{equation*} \RC_i = \{x| E_ix+e_i\geq 0\},\ i=1,2,\ldots,M \end{equation*}
img/regions.png

PWA Systems

PWA Slab Systems

\begin{equation*} \RC_i=\{x|\beta_i<c^\TR x<\beta_{i+1}\} \end{equation*}
\begin{equation*} \RC_i=\{x|\ |E_ix+e_i|<1 \} \end{equation*}
img/PWASlab.png

PWA Systems

PWA Differential Inclusions

In this toolbox, we have considered PWA differential inclusions (PWADI) described by:

\begin{equation*} \dot x \in \CO\{A_{i1}x+a_{i1}+B_{i1}u,A_{i2}x+a_{i2}+B_{i2}u\},\ x\in\RC_i \end{equation*}
img/pwadi.png

PWA Approximation

Given a nonlinear system:

\begin{equation*} \dot x = Ax+a+f(x)+B(x)u \end{equation*}

PWATOOLS can create a PWA approximation using the following approaches:

PWA Approximation - Uniform

img/uniform.png

PWA Approximation - Optimal Uniform

img/optimal.png

PWA Approximation - Multi-resolution

img/multi.png

PWA Approximation - Envelope

img/env.png

PWA Controller Synthesis

Global Lyapunov function

Find a PWA controller \(u=K_ix+k_i\) such that:

PWA Controller Synthesis

Piecewise quadratic Lyapunov function

Find a PWA controller \(u=K_ix+k_i\) such that:

The dynamics of the closed loop system is described by:

\begin{equation*} \dot x = (A_i+B_iK_i)x+a_i+B_ik_i \end{equation*}

Example

Flutter Phenomenon

img/vrImage.jpg

[flutter96]

Flutter Suppression

img/wing01.png img/wing02.jpg

State Space Equations:

\begin{align*} M\bmat \ddot{h} \\ \ddot{\alpha} \emat +(C_0+C_\mu)\bmat \dot{h} \\ \dot{\alpha} \emat+(K_0+K_\mu)\bmat h \\ \alpha \emat+\bmat 0 \\ \alpha K_\alpha(\alpha)\emat=B\beta^o \end{align*}
\begin{equation*} K_\alpha(\alpha)=2.82\alpha-62.322\alpha^2+3709.71\alpha^3-24195.6\alpha^4+48756.954\alpha^5 \end{equation*}

[flutter07] [flutter98]

PWATOOLS

pwacreate(4,2,ActiveFlutter_non.m);
model.A = [0 0 1 0;
0 0 0 1;
-M\(Ko+Ku) -M\(Co+Cu)];
model.Bx = [0 0; 0 0;muu*inv(M)*B];
model.aff = [0;0;0;0];
model.fx = @Flutter_Nonlinearity;
model.xcl = [0;0;0;0];
model.Domain ={[-1 1],[-1 1],[-1 1],[-5 5]}
model.NonlinearDomain = [0;1;0;0];
model.mtd = Uniform;
model.M =6; % Number of regions

PWATOOLS

function F = Flutter_Nonlinearity(x)

qx2 = 2.82*x(2)-62.322*x(2)^2+3709.71
   *x(2)^3-24195.6*x(2)^4
   +48756.954*x(2)^5;|
M = [12.387 0.418; 0.418 0.065];                                            |
F = [0;0;-inv(M)*[0;qx2]];

PWATOOLS

x0=[.4 .63 .5 1.2]';
setting.alpha=.1;
setting.SynthMeth='bmi';
setting.RandomQ= 0;
setting.RandomR= 0;

setting.QLin= 1.0e+003 *
[2.7378    1.9536    2.1565    1.5109
1.9536    1.8326    1.5729    0.8522
2.1565    1.5729    1.9228    1.2733
1.5109    0.8522    1.2733    1.1032];

setting.RLin= 1.0e+003 *
[2.7512    3.0551
3.0551    3.3928];

PWATOOLS

ctrl=pwasynth(pwainc, x0, setting);
\begin{align*} \overline{K}_1=& \bmat -2.14 & 64.26 & -5.54 & -18.41 & 17.92\\ 2.06 & -61.22 & 2.90 & 6.43 & -7.79 \emat,\\ \overline{K}_2=& \bmat -2.14 & -15.79 & -5.54 & -18.41 & 0\\ 2.06 & 5.39 & 2.90 & 6.43 & 0 \emat,\\ \overline{K}_3=& \bmat -2.14 & -2.59 & -5.54 & -18.41 & 0\\ 2.06 & -28.19 & 2.90 & 6.43 & 0 \emat,\\ \overline{K}_4=& \bmat -2.14 & 77.35 & -5.54 & -18.41 & 26.64\\ 2.06 & -70.89 & 2.90 & 6.43 & -14.24 \emat,\\ \overline{K}_5=& \bmat -2.14 & 85.10 & -5.54 & -18.41 & -48.41\\ 2.06 & -44.49 & 2.90 & 6.43 & 20.10 \emat,\\ \overline{K}_6=& \bmat -2.14 & 40.75 & -5.54 & -18.41 & -18.85\\ 2.06 & -34.06 & 2.90 & 6.43 & 13.15 \emat \end{align*}

PWATOOLS

Simulation results

img/2s.png

Conclusions

Publications

References

[flutter96]Modeling the benchmark active control technology wind tunnel model for application to flutter suppression, M. R. Waszak, AIAA 96 - 3437, http://www.mathworks.com/matlabcentral/fileexchange/3938
[flutter98]Stability and control of a structurally nonlinear aeroelastic system, Jeonghwan Ko and Thomas W. Strganacy, Journal of Guidance, Control, and Dynamics, 21 , 718-725.
[flutter07]Nonlinear control design of an airfoil with active flutter suppression in the presence of disturbance, S. Afkhami and H. Alighanbari, IET Control Theory Appl., vol. 1 , 1638-1649.
[arash98]
  1. Hassibi and S. Boyd. Quadratic stabilization and control of piecewise-linear systems. Proceedings of the American Control Conference, 6:3659 – 3664, 1998
[yalmip]
  1. Löfberg, YALMIP, A Toolbox for Modeling and Optimization in MATLAB, In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004, http://users.isy.se/johanl/yalmip

References

[rodrigues05]
  1. Rodrigues and S. Boyd. Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization. Systems and Control Letters, 54:835–853, 2005
[samadi08]
  1. Samadi and L. Rodrigues. Extension of local linear controllers to global piecewise affine controllers for uncertain non-linear systems, International Journal of Systems Science, 39(9):867–879, 2008
[samadi09]
  1. Samadi and L. Rodrigues, A duality-based convex optimization approach to L2-gain control of piecewise affine slab differential inclusions, Automatica, vol. 45, no. 3, pp. 812 - 816, Mar. 2009
[samadi11]
  1. Samadi and L. Rodrigues, A unified dissipativity approach for stability analysis of piecewise smooth systems, Automatica, vol. 47, no. 12, pp. 2735 - 2742, Dec. 2011