
Tehran Polytechnic

Final Project of Convex Optimization(2384213)

Convex Optimization in Model
Predictive Control

Author:
Yousof Koohmaskan

Supervisor:
Dr. Behzad Samadi

Koohmaskan@gmail.com

Koohmaskan@aut.ac.ir

August 25, 2010

Contents

1 Introduction 3
1.1 Introduction to predictive control 3
1.2 Concept of MPC . 6
1.3 Filters in MPC . 9
1.4 Different type of predictive control 10

2 Optimal Control for General Systems 12
2.1 Optimal Control Based on Minimum Criterion 12

2.1.1 Dynamic Programming . 12
2.1.2 Pontryagin’s Minimum Principle 13

2.2 Optimal Control Based on Minimax Criterion 15
2.3 Linear Optimal Controls via LMI 16

2.3.1 LQR via LMI . 16
2.3.2 H∞ Control via LMI . 20

3 State Feedback in Model Predictive Control 23
3.1 LQR via LMI in Predictive Form 23
3.2 H∞ control via LMI in Predictive Form 29

4 Filters in MPC 31
4.1 Kalman Filter . 31
4.2 Minimum Variance Finite Impulse Response Filters 34

5 Quadratic Programming in MPC 43
5.1 Introduction . 43
5.2 Example of QP . 43
5.3 QP as semi-definite programming (SDP) 44
5.4 QP in Optimal Control . 45

5.4.1 QP with equality constraints 45
5.4.2 QP with inequality constraints 47

5.5 QP used in MPC . 50
5.6 Implementation . 52

A Appendix 56

1

List of Figures

1 Control System . 4
2 State feedback control . 4
3 Output injection control . 5
4 One-time long-term planning . 6
5 Periodic short-term planning . 7
6 Annual short-term planning . 8
7 Investment planning . 8
8 FIR filter with receding horizon 4 10
9 Optimal path from a to d . 12
10 Optimal control and states in example 2 19
11 H∞ optimal control and states in example 3 22
12 Tracking optimal control states in predictive form 27
13 Optimal control in predictive form 27
14 Tracking control in predictive form; new system 28
15 Optimal control in predictive form; new system 28
16 Tracking state using Kalman filter 35
17 Tracking optimal control using Kalman filter 35
18 Tracking state using MV filter 41
19 Tracking optimal control using MV filter 41
20 Error estimation in Kalman Filter and MV filter 42
21 States in QP problem with inequality constraints 53
22 Optimal control of QP problem with inequality constraints 53
23 States in QP problem with inequality constraints using CVXOPT 54
24 Optimal control of QP problem with inequality constraints using

CVXOPT . 54
25 States for QP problem in MPC 55
26 Optimal control for QP problem in MPC 55

2

Model predictive control is the only advanced con-
trol technology that has made a substantial im-
pact on industrial control problems: its success is
largely due to its almost unique ability to handle,
simply and effectively, hard constraints on control
and states. (D.Q.Mayne, Constrained optimal control. European

Control Conference, Plenary Lecture, September 2001)

1 Introduction

1.1 Introduction to predictive control

Model Predictive Control (MPC) is a modern powerful control strategy which
reached wide popularity in industry and process control. MPC is a form of
control in which the current control action is obtained by solving on-line, at
each sampling instant, a finite horizon open-loop optimal control problem, using
the current state of the plant as the initial state; the optimization yields an
optimal control sequence and the first control in this sequence is applied to the
plant. MPC where sometimes called Receding Horizon Control(RHC), but MPC
is better known , is based on the conventional optimal control that is obtained
by minimization or mini-maximization of some performance criterion either for
a fixed finite horizon or for an infinite horizon.
There are three types of well-known predictive control.

• Generalized predictive control(GPC)

• Receding Horizon Control(RHC)

• Model Predictive Control(MPC)

Historically, GPC and MPC has been investigated and implemented for indus-
trial applications independently. Originally, RHC dealt with state-space models,
while GPC and MPC dealt with I/O models. These three controls are equivalent
to one another when the problem formulation is the same.

We would like to discuss about discrete-time systems, because of easy apply-
ing via computer aided design and also near subject to my final project!
A dynamical control system has input variable, state variable and output vari-
able. Its model can be linear or nonlinear. It can be represented as a stochastic
system with noises or a deterministic system with disturbance. In the Figure 1
a control system is depicted.

3

u (input)

d/n

(disturbance/noise)

y (output)

x (state)

System

Figure 1: Control System

There are some objective for control system, e.g. output regulation, tracking
reference signal, closed-loop stability and so on. If all the states be available, the
state feedback can be used for control and if system be observable, output feed-
back (output injection) may be applied. Figure 2 illustrates the state feedback
control and Figure 3 show output injection control.

u (input)

d/n

(disturbance/noise)

y (output)

x (state)

System Controller
r (reference)

Figure 2: State feedback control

There are several approaches for control designs to meet control objectives.
Optimal control has been one of the widely used methods. It is obtained by min-
imizing or maximizing a certain performance criterion or combination of them,
i.e. mini-maximizing or maxi-minimizing a certain performance criterion.

4

u (input)

d/n

(disturbance/noise)

y (output)

x (state)

System Controller
r (reference)

Figure 3: Output injection control

Some popular optimal controls:

• The LQ control for state feedback control based on minimizing

• The LQG control for output feedback control based on minimizing

• The H∞ control based on mini-maximization

5

1.2 Concept of MPC

Often, feedback control systems must run for a sufficiently long period, as in
electrical power generation plants and chemical processes. The basic concept of
MPC is as follows;

1. At the current time, the optimal control is obtained, either closed-loop
type, or open-loop type, on a finite fixed horizon from the current time k,
say [k, k +N].

2. Among the optimal controls on the entire fixed horizon [k, k+N], only the
first one is adopted as the current control law.

3. The procedure is then repeated at the next time, say [k + 1, k + 1 +N].

Here we refer to description of [1] about idea in receding horizon control.
The concept of RHC can be easily explained by using a company’s investment
planning to maximize the profit. The investment planning should be continued
for the years to come as in feedback control systems. There could be three poli-
cies for a company’s investment planning:

(1) One-time long-term planning
Investment planning can be carried over a fairly long period, which is closer to
infinity, as in Figure 4 This policy corresponds to the infinite horizon optimal
control obtained over [k,∞].

2000 2005 2010 2014
years

Investments

Figure 4: One-time long-term planning

6

(2) Periodic short-term planning Instead of the one-time long-term planning,
we can repeat short-term investment planning, say investment planning every
5-years, which is given in Figure 5.

2000 2004 2009 2014

Investments

2000 2004 2009 2014

2000 2004 2009 2014
years

Figure 5: Periodic short-term planning

7

(3) Annual short-term planning For a new policy, it may be good to have a
short-term planning every year and the first year’s investment is selected for the
current year’s investment policy. This concept is depicted in Figure 6.

2000 2005 2010 2014

Investments

2000 2005 2010 2014

2000 2005 2010 2014

2000 2005 2010 2014
years

2000 2005 2010

Figure 6: Annual short-term planning

It may be good to have a short-term planning every year and the first year’s
investment is selected for the current year’s investment policy. This investment
planning can be shown as in Figure 7.

2000 2005 2010 2014
years

Investments

Figure 7: Investment planning

8

All the planning mentioned before have some advantages and some disad-
vantages. Whereas the long term planning gives us infinite horizon, but the
computation may last much, the short-time planning gives us fast computation,
but finite horizon. In the missile control systems, the second(short-time plan-
ning) is used.

1.3 Filters in MPC

If the states may not be available or the measurement of all states be expensive,
we should estimate the states via measuring the inputs and outputs. This proce-
dure can be performed by a state observer for deterministic systems or a filter for
stochastic systems. Often, it is called a filter for both systems. The well-known
Luenberger observer for deterministic state-space signal models and the Kalman
filter for stochastic state-space signal models are infinite impulse response (IIR)
type filters. This means that the state observer utilizes all the measured data up
to the current time k from the initial time k0. Equation (1) and (2) demonstrate
state observer and state space realization, respectively.

x̂[k + 1] = Ax̂[k] +Bu[k] + L (y[k]− Cx̂[k]−Du[k]) (1)

G =

[
A− LC B − LD L

I 0 0

]
(2)

Where

[
u
y

]
is input and x̂ is output.

Instead, we can utilize the measured data on the recent finite time [kNf , k]
and obtain an estimated state by a linear combination of the measured inputs and
outputs over the receding finite horizon with some weighting gains to be chosen
so that the error between the real state and the estimated one is minimized. Nf

is called the filter horizon size and is a design parameter.

Example 1 As an example, consider the state(1-Dimensional) in this filter.

x̂[k] = 1.4750x[k − 1]− 0.6787x[k − 2] + 0.1191x[k − 3]− 0.0065x[k − 4]

Figure 8 shows that the filter used from 4 previous steps to estimate present step.
The window which here, we call it horizon move to right each step, means doesn’t
employ more than 4 steps to estimate. It is a finite impulse response (FIR) type
filter.

9

step 5

Receding horizon 4

step 6

step 15

Figure 8: FIR filter with receding horizon 4

1.4 Different type of predictive control

After introduction to MPC, we present some difference between types of predic-
tive control as mentioned before.

GPC was developed in the self-tuning and adaptive control area. Some con-
trol strategies that achieve minimum variance were adopted in the self-tuning
control. GPC is based on the single input and single output (SISO) models
such as auto regressive moving average (ARMA) or controlled auto regressive
integrated moving average (CARIMA) models which have been widely used for
most adaptive controls.

MPC has been developed on a model basis in the process industry area as
an alternative algorithm to the conventional proportional integrate derivative
(PID) control that does not utilize the model. The original version of MPC was
developed for truncated I/O models, such as FIR models or finite step response
(FSR) models. Model algorithmic control (MAC) was developed for FIR models
and the dynamic matrix control (DMC) was developed for FSR models . These

10

two control strategies coped with I/O constraints. Since I/O models such as the
FIR model or the FSR model are physically intuitive, they are widely accepted
in the process industry. However, these early control strategies were somewhat
heuristic, limited to the FIR or the FSR models, and not applicable to unstable
systems. Thereafter, lots of extensions have been made for state-space models.
Some of applications are as follows:

• Distillation column

• Pulp and paper plant

• Servo mechanism

• Robot arm

RHC has been developed in academia as an alternative control to the cele-
brated LQ controls. RHC is based on the state-space framework. The stabilizing
property of RHC has been shown for case of both continuous and discrete sys-
tems using the terminal equality constraint. In addition, it has been extended
to tracking controls, output feedback controls, and nonlinear controls.

What makes MPC successful in industry are:

• It handles multivariable control problems naturally

• It can take account of actuator limitations

• It allows operation closer to constraints, hence increased profit

• It has plenty of time for on-line computations

• It can handle non-minimal phase and unstable processes

• It is an easy to tune method and

• It handles structural changes.

11

2 Optimal Control for General Systems

2.1 Optimal Control Based on Minimum Criterion

A discrete time system is represented by:

xi+1 = f(xi, ui, i), xi0 = x0 (3)

where xi ∈ Rn and ui ∈ Rm are state and input respectively.
A performance criterion with the free terminal state is given by

J(xi0 , i0, u) =

if−1∑
i=i0

g(xi, ui, i) + h(xif , if) (4)

The minimization problem is then

minimize J(xi0 , i0, u)
subject to constraints

(5)

The constraints may be for example terminal constraints, i.e. xif = xf . So the
cost function will has small change. The function h(., .) then is constant and new
constraint should be satisfied. In other word the problem now is

minimize
∑if−1

i=i0
g(xi, ui, i)

subject to xif = xf
(6)

2.1.1 Dynamic Programming

Bellman’s principle of optimality tells: An optimal policy has the property that
whatever the initial state and initial decision are,the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first de-
cision. Figure 9 depicts the method of selecting optimal path from a to d. In

a
d

Sab

S*bcd

b

c

S*abcd= S*bcd+ min{ Sab }

Figure 9: Optimal path from a to d

fact the best path is chosen from domain that minimize Sab cost function, i.e.
p∗ = arg(minSab(u)). It may be interesting about choice of the name dynamic

12

programming by Richard Bellman. He said ”I spent the Fall quarter (of 1950) at

RAND. My first task was to find a name for multistage decision processes. An interesting

question is, Where did the name, dynamic programming, come from? The 1950s were not good

years for mathematical research. We had a very interesting gentleman in Washington named

Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the

word, research. I’m not using the term lightly; I’m using it precisely. His face would suffuse,

he would turn red, and he would get violent if people used the term, research, in his presence.

You can imagine how he felt, then, about the term, mathematical. The RAND Corporation was

employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt

I had to do something to shield Wilson and the Air Force from the fact that I was really doing

mathematics inside the RAND Corporation. What title, what name, could I choose? In the

first place I was interested in planning, in decision making, in thinking. But planning, is not a

good word for various reasons. I decided therefore to use the word, programming. I wanted to

get across the idea that this was dynamic, this was multistage, this was time-varying. I thought,

let’s kill two birds with one stone. Let’s take a word that has an absolutely precise meaning,

namely dynamic, in the classical physical sense. It also has a very interesting property as an

adjective, and that is it’s impossible to use the word, dynamic, in a pejorative sense. Try think-

ing of some combination that will possibly give it a pejorative meaning. It’s impossible. Thus,

I thought dynamic programming was a good name. It was something not even a Congressman

could object to. So I used it as an umbrella for my activities”.

2.1.2 Pontryagin’s Minimum Principle

By definition, the optimal control u∗ makes the performance criterion J be a
local minimum if

J(u)− J(u∗) = ∆J ≥ 0 (7)

Define the function H, called the Hamiltonian

H(xi, ui, pi+1, i) , g(xi, ui, i) + pTi+1f(xi, ui, i) (8)

where pi+1 is Lagrange multiplier.
In terms of the Hamiltonian, the necessary conditions for u∗i to be an optimal
control are

x∗i+1 =
∂H
∂pi+1

(x∗i , u
∗
i , p
∗
i+1, i) (9)

p∗i =
∂H
∂x

(x∗i , u
∗
i , p
∗
i+1, i) (10)

H(x∗i , u
∗
i , p
∗
i+1, i) ≤ H(x∗i , ui, p

∗
i+1, i) (11)

for all admissible ui on the i ∈ [i0, if1], and two boundary conditions

xi0 = x0

p∗if =
∂h

∂xif
(x∗if , if)

(12)

13

In this case, for u∗i to minimize the Hamiltonian it is necessary that

∂H
∂ui

(x∗i , u
∗
i , p
∗
i+1, i) = 0, i ∈ [i0, if1] (13)

If (14) is satisfied and the matrix Hessian be positive definite, i.e.

∂2H
∂u2

i

(x∗i , u
∗
i , p
∗
i+1, i) > 0

then, the problem is convex and u∗i is global optimal solution which makes cost
function J to be minimized.
The above phrase point out a fundamental property of convex optimization prob-
lems that say, any locally optimal point is also globally optimal [2].

14

2.2 Optimal Control Based on Minimax Criterion

When the term minimax is mentioned, we usually think about something that
causes undesired treatment. Disturbance may be a good instance. First we find
the disturbance w where maximize the cost function J and then find the control
law u where minimize it. The system that we should consider is as following:

xi+1 = f(xi, ui, wi, i), xi0 = x0 (14)

with a performance criterion

J(xi0 , i0, u, w) =

if−1∑
i=i0

[g(xi, ui, wi, i)] + h(xif , if) (15)

where xi ∈ Rn, ui ∈ Rm and wi ∈ Rl are state, input and disturbance respec-
tively.
We want to minimize the performance criterion, while disturbances try to max-
imize one. We may think that u∗ is the best control, while w∗ is the worst
disturbance. The existence of these u∗ and u∗ is guaranteed by specific condi-
tions. Hence the below inequality is satisfied:

J(xi0 , i0, u
∗, w) ≤ J(xi0 , i0, u

∗, w∗) ≤ J(xi0 , i0, u, w
∗) (16)

The control law u∗ makes the performance criterion (15) a local minimum if

J(u,w)− J(u∗, w) = ∆J ≥ 0 (17)

and the disturbance w∗ makes the performance criterion (15) a local maximum
if

J(u,w)− J(u,w∗) = ∆J ≤ 0 (18)

and finally, in terms of the Hamiltonian, the necessary conditions for u∗i to be an
optimal control are

x∗i+1 =
∂H
∂pi+1

(x∗i , u
∗
i , w

∗
i , p
∗
i+1, i) (19)

p∗i =
∂H
∂x

(x∗i , u
∗
i , w

∗
i , p
∗
i+1, i) (20)

H(x∗i , u
∗
i , wi, p

∗
i+1, i) ≤ H(x∗i , u

∗
i , w

∗
i , p
∗
i+1, i) ≤ H(x∗i , ui, w

∗
i , p
∗
i+1, i) (21)

for all admissible ui and wi on the i ∈ [i0, if1], and two boundary conditions

xi0 = x0

p∗if =
∂h

∂xif
(x∗if , if)

The cost function for the dynamic programming in minimaximization criterion
can be obtained from equation below:

J∗(xi, i) = min
u∈U

max
w∈W

[
g(xi, ui, wi, i) + J∗(f(xi, ui, wi, i), i+ 1)

]
(22)

15

2.3 Linear Optimal Controls via LMI

Optimal control problems for discrete LTI systems are reformulated in terms of
linear matrix inequalities (LMIs). Since LMI problems are convex, it can be
solved very efficiently and the global minimum is always found.

2.3.1 LQR via LMI

Infinite horizon LQR problem in discrete time system has the cost function as
follows:

J∞ =
∞∑
i=0

(
xTi Qxi + uTi Rui

)
(23)

where Q > 0 and R > 0.
We focus on designing a linear optimal state feedback control, i.e. ui = Hxi.
Assume that exist V (xi) = xTi Kxi, which K > 0 and satisfies the following
inequality:

V (xi+1)− V (xi) ≤ −Ψi (24)

where Ψi = xTi Qxi + uTi Rui. If we write inequality (24) in following manner:

V (x1)− V (x0) ≤ −Ψ0

V (x2)− V (x1) ≤ −Ψ1

V (x3)− V (x2) ≤ −Ψ2
...

V (xn+1)− V (xn) ≤ −Ψn
...

sum of both sides of inequality with attention that V is decreasing yields:

−V (x0) ≤ −Ψ0 −Ψ1 −Ψ2 − · · · −Ψn − · · ·

if n→∞ yields:
V (x0) ≥ J∞ (25)

substituting xi+1 = Axi +Bui and ui = Hxi in (24)(
Axi +BHxi

)T
K
(
Axi +BHxi

)
− xTi Kxi ≤ −

(
xTi Qxi + (Hxi)

TR(Hxi)
)

xTi

(
A+BH

)T
K
(
A+BH

)
xi − xTi Kxi ≤ −xTi

(
Q+HTRH

)
xi (26)

if all the xi satisfies (26), the matrices inequality is:

(A+BH)TK(A+BH)−K + (Q+HTRH) ≤ 0 (27)

We should minimize cost function J∞. But another approach can be minimizing
its upper bound as in (25). This approach can be repeated in one other step,

16

i.e. instead of directly minimizing V (x0), we take an approach where its upper
bound is minimized. For this purpose, assume that there exists γ > 0 such that

xT0Kx0 ≤ γ (28)

The inequality (27) can be written:

−K +Q+HTRH + (A+BH)TK(A+BH) ≤ 0

−K +
[
HT (A+BH)T I

]

R 0 0

0 K 0

0 0 Q




H

A+BH

I

 ≤ 0

−K +
[
HT (A+BH)T I

]

R−1 0 0

0 K−1 0

0 0 Q−1


−1 

H

A+BH

I

 ≤ 0 (29)

Note that R must be nonsingular. Applying Schur complement to (29) we have

K HT (A+BH)T I

H R−1 0 0

A+BH 0 K−1 0

I 0 0 Q−1


≥ 0 (30)

Also for the inequality (28):

γ − xT0
(
K−1

)−1

x0 ≥ 0[
γ xT0
x0 K−1

]
≥ 0 (31)

17

Several LMIs can be representable as one single LMI. Combining (30) and
(31) yields 

K HT (A+BH)T I 0 0

H R−1 0 0 0 0

A+BH 0 K−1 0 0 0

I 0 0 Q−1 0 0

0 0 0 0 γ xT0

0 0 0 0 x0 K−1



≥ 0 (32)

Pre and post multiplying (33) by a positive definite matrix diag(K−1, I, I, I, I, I),

K−1 K−1HT K−1(A+BH)T K−1 0 0

HK−1 R−1 0 0 0 0

(A+BH)K−1 0 K−1 0 0 0

K−1 0 0 Q−1 0 0

0 0 0 0 γ xT0

0 0 0 0 x0 K−1



≥ 0 (33)

Changing variable Y = K−1 and L = HK−1, the problem summarize below.

minimize γ

subject to



Y LT (AY +BL)T Y T 0 0

L R−1 0 0 0 0

(AY +BL) 0 Y 0 0 0

Y 0 0 Q−1 0 0

0 0 0 0 γ xT0

0 0 0 0 x0 Y



≥ 0
(34)

18

After finding Y and L, the state feedback obtains; H = LY −1

Example 2 Consider the following LQR problem:

x[k + 1] =

[
0.8 0.75
0 1

]
x[k] +

[
0 −0.2
1 0.5

]
u[k]

with the weighting matrices Q = I and R = 10I. Suppose that the initial con-
dition be x0 = [−3 5]T . We want to find control which minimizes the cost
function J∞, mentioned before.
Here we obtain matrices Y and L and parameter γ as below:

Y =

[
0.5799 −0.1570
−0.1570 0.1678

]
L =

[
0.0237 −0.0685
0.0223 −0.0303

]
γ = 155.5400

Consequently,

H = LY −1 =

[
−0.0934 −0.4958
−0.0140 −0.1938

]
The control and states is represented in Figure (10)

0 5 10 15 20 25 30
−3

−2

−1

0

1
Optimal Control

u1

u2

0 5 10 15 20 25 30
−5

0

5
State

Sample time

x1

x2

Figure 10: Optimal control and states in example 2

19

2.3.2 H∞ Control via LMI

The system is modeled below:

xi+1 = Axi +Bui (35)

zi = Czxi +Dzuui (36)

For this system, the well-known bounded real lemma (BRL) is stated as follows:

Lemma 1 (Bounded Real Lemma) Let γ > 0. If there exists X > 0 such
that 

−X−1 A B 0
AT −X 0 CT

z

BT 0 −γWu DT
zu

0 Cz Dzu −γW−1
z

 < 0 (37)

then ∑∞
i=i0

zTi Wzzi∑∞
i=i0

uTi Wuui
< γ2 (38)

where ui and zi are input and output of system (35), (36).

The proof isn’t difficult. It is utilizing Lyapunov function (V (xi) = xTi Kxi) and
in the proof procedure X will be equivalent to 1√

γ
K.

Now, we consider the system with disturbance.

xi+1 = Axi +Bui +Bwwi, x0 = 0 (39)

zi = Czxi +Dzuui (40)

The control law has to be satisfy ui = Hxi (one of the constraints). Substituting
in (39), (40)

xi+1 = (A+BH)xi +Bwwi, x0 = 0

zi = (Cz +DzuH)xi

According to the BRL, H which guarantees ‖G(z)‖∞ < γ should satisfy, for
some X > 0,

−X−1 (A+BH) Bw 0

(A+BH)T −X 0 (Cz +DzuH)T

BT
w 0 −γI 0

0 (Cz +DzuH) 0 −γI


< 0 (41)

20

Pre- and post-multiplying (41) by diag(I,X−1, I, I):

−X−1 (A+BH)X−1 Bw 0

X−1(A+BH)T −X−1 0 X−1(Cz +DzuH)T

BT
w 0 −γI 0

0 (Cz +DzuH)X−1 0 −γI


< 0 (42)

A change of variables such that:

Y = X−1 and L = HX−1



−Y (AY +BL) Bw 0

(AY +BL)T −Y 0 (CzY +DzuL)T

BT
w 0 −γI 0

0 (CzY +DzuL) 0 −γI


< 0 (43)

If the above problem be feasible, the H is a state feedback which guarantee
‖G(z)‖∞ < γ. Infinite horizon H∞ control via LMI, can be summarized as fol-
lowing optimization problem:

minimize γ

subject to



−Y (AY +BL) Bw 0

(AY +BL)T −Y 0 (CzY +DzuL)T

BT
w 0 −γI 0

0 (CzY +DzuL) 0 −γI


< 0

(44)
and control obtained H = LY −1.

Example 3 Consider the problem Example 2, but already H∞ problem :

x[k + 1] =

[
0.8 0.75
0 1

]
x[k] +

[
0 −0.2
1 0.5

]
u[k] +

[
0.01 −0.032
0.101 −0.05

]
w[k]

y[k] =
[
1 −0.1

]
x[k] +

[
0.1 −0.05

]
u[k]

Suppose that the initial condition be x0 = [−3 5]T . We want to find control
which minimizes the ‖G(z)‖∞.

21

Here we obtain matrices Y and L and parameter γ as below:

Y =

[
959.0 735.4
735.4 1183.2

]
L =

[
−4888.0 −3530.8
7933.0 5279.0

]
γ = +1.63456e− 005

Consequently,

H = LY −1 =

[
−5.3661 0.3509
9.2678 −1.2983

]
The state feedback:

ui = Hxi

The control and states is represented in Figure (11)

0 5 10 15 20 25 30
−50

0

50

100

H∞ optimal control

u1

u2

0 5 10 15 20 25 30
−5

0

5

10
State

Sample time

x1

x2

Figure 11: H∞ optimal control and states in example 3

22

3 State Feedback in Model Predictive Control

3.1 LQR via LMI in Predictive Form

First we focus on free terminal state. From discrete time system relations, i.e.

xk+j+1|k = Axk+j|k +Buk+j|k

zk+j|k = Czxk+j|k j ∈ [0, N − 1]

we can write the system in the time interval [k, k +N].

xk|k = xk|k

xk+1|k = Axk|k +Buk|k

xk+2|k = Axk+1|k +Buk+1|k
...

xk+N |k = Axk+N−1|k +Buk+N−1|k

Substituting first line in second, then second in third, . . .

xk|k = xk|k

xk+1|k = Axk|k +Buk|k

xk+2|k = A(Axk|k +Buk|k) +Buk+1|k

= A2xk|k + ABuk|k +Buk+1|k

xk+3|k = A(A2xk|k + ABuk|k +Buk+1|k) +Buk+2|k

= A3xk|k + A2Buk|k + ABuk+1|k +Buk+2|k
...

xk+N−1|k = AN−1xk|k + AN−2Buk|k + · · ·+Buk+N−2|k

xk+N |k = ANxk|k + AN−1Buk|k + · · ·+Buk+N−1|k

There is one state which should be considered; xk|k. If we introduce new matrices:

F =


I
A
A2

...
AN−1

 and H =


0 0 0 · · · 0
B 0 0 · · · 0
AB B 0 · · · 0

...
...

. . .
...

AN−2B AN−3B · · · B 0

 (45)

Then we can use transformations

Uk =


uk|k
uk+1|k
uk+2|k

...
uk+N−1|k

 and Xk =


xk|k
xk+1|k
xk+2|k

...
xk+N−1|k

 (46)

23

Now, we can write:
Xk = Fxk|k +HUk (47)

The terminal state is given by

xk+N |k = ANxk|k + AN−1Buk|k + · · ·+Buk+N−1|k (48)

where can be represented by

xk+N |k = ANxk|k + [AN−1B,AN−2B, · · · , B]


uk|k
uk+1|k
uk+2|k

...
uk+N−1|k


= ANxk|k + B̄Uk (49)

B̄ = [AN−1B,AN−2B, · · · , B]

Let us define

Q̄N = diag{Q, · · · , Q︸ ︷︷ ︸
N

}, and R̄N = diag{R, · · · , R︸ ︷︷ ︸
N

} (50)

The cost function can be rewritten by

J(xk, Uk) = [Xk −Xr
k]T Q̄N [Xk −Xr

k] + UT
k R̄NUk

+ (xk+N |k − xrk+N)TQf (xk+N |k − xrk+N) (51)

where

Xr
k =


xrk
xrk+1

xrk+2
...

xrk+N−1


If we put the equation (47) and (49) in (51), then

J(xk, Uk) = [Fxk|k +HUk −Xr
k]T Q̄N [Fxk|k +HUk −Xr

k] + UT
k R̄NUk

+ (ANxk|k + B̄Uk − xrk+N)TQf (A
Nxk|k + B̄Uk − xrk+N)

= UT
k [HT Q̄NH + R̄N]Uk + 2[Fxk|k −Xr

k]T Q̄NHUk

+ [Fxk|k −Xr
k]T Q̄N [Fxk|k −Xr

k]

+ (ANxk|k + B̄Uk − xrk+N)TQf (A
Nxk|k + B̄Uk − xrk+N)

= UT
k WUk + wTUk + [Fxk|k −Xr

k]T Q̄N [Fxk|k −Xr
k]

+ (ANxk|k + B̄Uk − xrk+N)TQf (A
Nxk|k + B̄Uk − xrk+N) (52)

24

where W = HT Q̄NH and wT = 2[Fxk|k −Xr
k]T Q̄NH.

The optimal input can be obtained by taking ∂J(xk,Uk)
∂Uk

= 0. So

∂J(xk, Uk)

∂Uk
= W TUk +WUk + w + 2B̄TQf (A

Nxk|k + B̄Uk − xrk+N)

= 2WUk + w + 2B̄TQf B̄Uk + 2B̄TQf (A
Nxk|k − xrk+N)

= 2[W + B̄TQf B̄]Uk + 2HT Q̄N [Fxk|k −Xr
k] + 2B̄TQf (A

Nxk|k − xrk+N)

= 0

Uk = −[W + B̄TQf B̄]−1
[
HT Q̄N(Fxk|k −Xr

k) + B̄TQf (A
Nxk|k − xrk+N)

]
(53)

The optimal control can be obtained as

uk = [1, 0, · · · , 0]Uk (54)

In order to obtain an LMI form, we decompose the cost function (52) into two
parts

J(xk, Uk) = J1(xk, Uk) + J2(xk, Uk)

where

J1(xk, Uk) = UT
k WUk + wTUk + [Fxk|k −Xr

k]T Q̄N [Fxk|k −Xr
k]

J2(xk, Uk) = (ANxk|k + B̄Uk − xrk+N)TQf (A
Nxk|k + B̄Uk − xrk+N)

We assume that

J1(xk, Uk) ≤ γ1

J2(xk, Uk) ≤ γ2

or

UT
k WUk + wTUk + [Fxk|k −Xr

k]T Q̄N [Fxk|k −Xr
k] ≤ γ1 (55)

(ANxk|k + B̄Uk − xrk+N)TQf (A
Nxk|k + B̄Uk − xrk+N) ≤ γ2 (56)

Hence
J(xk, Uk) ≤ γ1 + γ2 (57)

From Schur complement, (55) and (56) are equivalent to[
γ1 − wTUk − [Fxk|k −Xr

k]T Q̄N [Fxk|k −Xr
k] UT

k

Uk W−1

]
≥ 0 (58)

and [
γ2 (ANxk|k + B̄Uk − xrk+N)

(ANxk|k + B̄Uk − xrk+N)T Q−1
f

]
≥ 0 (59)

25

The optimal solution U∗k can be obtained by an LMI problem as follows:
minimize γ1 + γ2

subject to

[
γ1 − wTUk − [Fxk|k −Xr

k]T Q̄N [Fxk|k −Xr
k] UT

k

Uk W−1

]
≥ 0

[
γ2 (ANxk|k + B̄Uk − xrk+N)

(ANxk|k + B̄Uk − xrk+N)T Q−1
f

]
≥ 0

Then optimal control can be obtained by u∗k = [1, 0, · · · , 0]U∗k .

For the fixed terminal state, the inequality (56) isn’t needed and it changes
to equality form

ANxk|k + B̄Uk = xrk+N (60)

Thus, we should solve following SDP:
minimize γ1

subject to

[
γ1 − wTUk − [Fxk|k −Xr

k]T Q̄N [Fxk|k −Xr
k] UT

k

Uk W−1

]
≥ 0

ANxk|k + B̄Uk = xrk+N

26

Example 4 Consider following system in free terminal state:

x[k + 1] =

[
1 0.75
0 0.8

]
x[k] +

[
0
1

]
u[k]

with cost function weighting matrices, Q = I, R = 10 and Qf = 5I. We want
optimal control to track the reference signals

xr1[k] = sin[k/10] and xr2[k] = sin[k/10 + 1]

Receding horizon is equal to 5, i.e. N=5
We use control (53) to solve the problem. The states and optimal control are
depicted in Figures (12) and (13) respectively. Figure (12) illustrates that, the

0 10 20 30 40 50 60
−4

−2

0

2
State

x1

xref

0 10 20 30 40 50 60
−2

0

2

4

6

time

x2

xref

Figure 12: Tracking optimal control states in predictive form

0 10 20 30 40 50 60
−6

−4

−2

0

2

time

Optimal control

Figure 13: Optimal control in predictive form

27

state x1 is tracked well, but x2 isn’t. I encountered an unexpected result. When
we moved one of the eigenvalues of matrix A outside the unit circle, tracking
result in state x2 improved! For example the eigenvalues of following system are
in 3.7 and 0.8.

x[k + 1] =

[
3.7 0.75
0 0.8

]
x[k] +

[
0
1

]
u[k]

System has a unstable pole, but control law and state x2 are bounded, but tracking
in x1 distorts.Figures (14) and (15) demonstrate the results.

0 20 40 60 80 100 120
−10

−5

0

5
State

x1

xref

0 20 40 60 80 100 120
−20

0

20

40

time

x2

xref

Figure 14: Tracking control in predictive form; new system

0 20 40 60 80 100 120
−20

−10

0

10

20

30
Optimal control

time

Figure 15: Optimal control in predictive form; new system

28

3.2 H∞ control via LMI in Predictive Form

From discrete time system relations, i.e.

xk+j+1|k = Axk+j|k +Buk+j|k +Bwwk+j|k

zk+j|k = Czxk+j|k j ∈ [0, N − 1]

we can have new representation:

xk|k = xk|k

xk+1|k = Axk|k +Buk|k +Bwwk|k

xk+2|k = A(Axk|k +Buk|k +Bwwk|k) +Buk+1|k +Bwwk+1|k

= A2xk|k + ABuk|k + ABwwk|k +Buk+1|k +Bwwk+1|k

xk+3|k = A(A2xk|k + ABuk|k + ABwwk|k +Buk+1|k +Bwwk+1|k) +Buk+2|k +Bwwk+2|k

= A3xk|k + A2Buk|k + A2Bwwk|k + ABuk+1|k + ABwwk+1|k +Buk+2|k +Bwwk+2|k
...

xk+N−1|k = AN−1xk|k + AN−2Buk|k + AN−2Bwwk|k + · · ·+Buk+N−2|k +Bwwk+N−2|k

xk+N |k = ANxk|k + AN−1Buk|k + AN−1Bwk|k + · · ·+Buk+N−1|k +Bwwk+N−1|k

Xk = Fxk|k +HUk +HwWk (61)

where Xk, F , H and Uk are same as mentioned before, but

Wk =


wk|k
wk+1|k
wk+2|k

...
wk+N−1|k

 and Hw =


0 0 0 · · · 0
Bw 0 0 · · · 0
ABw Bw 0 · · · 0

...
...

. . .
...

AN−2Bw AN−3Bw · · · Bw 0

 (62)

The H∞ performance criterion can be written as

J(xk, Uk,Wk) = [Fxk|k +HUk +HwWk −Xr
k]T Q̄N [Fxk|k +HUk +HwWk −Xr

k]

+ (ANxk|k + B̄Uk + B̄wWk − xrk+N)TQf (A
Nxk|k + B̄Uk + B̄wWk − xrk+N)

+ UT
k R̄NUk − γ2W T

k Wk (63)

Representing J(xk, Uk,Wk) in quadratic form

J(xk, Uk,Wk) = [V1Wk + V2]TV−1
1 [V1Wk + V2] + UT

k P1Uk + 2UT
k P2 + P3 (64)

where

V1 , −γ2I + B̄T
wQf B̄w +HT

w Q̄NHw (65)

V2 , HT
w Q̄

T
N [Fxk|k +HUk −Xr

k] + B̄T
wQ

T
f [ANxk|k + B̄Uk − xrk+N] (66)

P1 , −(HT
w Q̄

T
NH + B̄T

wQ
T
f B̄)TV−1

1 (HT
w Q̄

T
NH + B̄T

wQ
T
f B̄) (67)

+HT Q̄NH + B̄T
wQf B̄ + R̄N (68)

P2 , −(HT
w Q̄

T
NH + B̄T

wQ
T
f B̄)TV−1

1 [HT
w Q̄

T
N(Fxk|k −Xr

k) (69)

+ B̄T
wQ

T
f (ANxk|k − xrk+N)] +HT Q̄NFxk|k + B̄TQfA

Nxk|k (70)

29

P3 is a constant and hasn’t any role in minimization or minimax. It can be
shown as two cost function:

J(xk, Uk,Wk) = J1(xk, Uk,Wk) + J2(xk, Uk,Wk)

where

J1(xk, Uk,Wk) = [V1Wk + V2]TV−1
1 [V1Wk + V2]

J2(xk, Uk,Wk) = UT
k P1Uk + 2UT

k P2 + P3

we should try to maximize [V1Wk+V2]TV−1
1 [V1Wk+V2] and minimize UT

k P1Uk+
2UT

k P2 + P3.
In order to have an LMI, we have to try to minimize

−[V1Wk + V2]TV−1
1 [V1Wk + V2]

means, ∃ γ2

−[V1Wk + V2]TV−1
1 [V1Wk + V2] ≤ γ2 (71)

and ∃ γ1

UT
k P1Uk + 2UT

k P2 ≤ γ1 (72)

Using Schur complement in the equations (71) and (72) yields[
γ1 − 2UT

k P2 UT
k

Uk P−1
1

]
≥ 0 (73)

and [
γ2 (V1Wk + V2)T

(V1Wk + V2) −V1

]
≥ 0 (74)

The SDP problem can be represented by:
minimize γ1 + γ2

subject to

[
γ1 − 2UT

k P2 UT
k

Uk P−1
1

]
≥ 0

[
γ2 (V1Wk + V2)T

(V1Wk + V2) −V1

]
≥ 0

What remains to do is just to pick up the first one among Uk as in (54)

30

4 Filters in MPC

4.1 Kalman Filter

Here, we consider the following stochastic model:

xi+1 = Axi +Bui +Gwi (75)

yi = Cxi + vi (76)

At the initial time i0, the state xi0 is a Gaussian random variable with a mean
x̄i0 and a covariance Pi0 . The system noise wi and the measurement noise vi
are zero-mean white Gaussian and mutually uncorrelated. The covariances of wi
and vi are denoted by Qw and Rv respectively, which are assumed to be positive
definite matrices. We assume that these noises are uncorrelated with the initial
state xi0 .

In practice, the state may not be available, so it should be estimated from
measured outputs and known inputs. Thus, a state estimator, or filter is needed.
This filter can be used for an output feedback control. We should estimate the
state xi from measured data and known inputs so that the error between the real
state and the estimated state is minimized.

The Kalman filter, is derived for the following performance criterion:

E[(xi − x̂i|i)T (xi − x̂i|i)|Yi] (77)

where x̂i|j is denoted by the estimated value at time i based on the measurement
up to j and Yi = [yi0 , · · · , yi]T .
x̂i+1|i and x̂i|i are often called a predictive estimated value and a filtered esti-
mated value respectively.

We want to find a relation which get us estimated x̂i+1|i from previous inputs
and outputs. By the definition of the conditional probability,

p(xi|Yi) =
p(xi, Yi)

p(Yi)
=
p(xi, yi, Yi−1)

p(yi, Yi−1)
(78)

The numerator can be represented as

p(xi, yi, Yi−1) = p(yi|xi, Yi−1)p(xi, Yi−1)

= p(yi|xi, Yi−1)p(xi|Yi−1)p(Yi−1)

= p(yi|xi)p(xi|Yi−1)p(Yi−1) (79)

where the last equality comes from the fact that if xi is given, then the Yi−1 is
redundant information. Substituting (79) in (78) yields

p(xi|Yi) =
p(xi, yi, Yi−1)

p(yi, Yi−1)
=
p(yi|xi)p(xi|Yi−1)p(Yi−1)

p(yi|Yi−1)p(Yi−1)

=
p(yi|xi)p(xi|Yi−1)

p(yi|Yi−1)
(80)

31

Since the Yi is given, the denominator is fixed, and about the nominator; it can
be evaluated from statistical information. For the given xi, yi follows the normal
distribution.

yi ∼ N (Cxi, Rv) (81)

Since E[xi|Yi−1] = x̂i|i−1 and E[(xi − x̂i|i−1)T (xi − x̂i|i−1)|Yi−1] = Pi|i−1, the
conditional probability p(xi|Yi−1) is normal, i.e. N (x̂i|i−1, Pi|i−1). Thus, we have

p(yi|xi) =
1√

(2π)m|Rv|
exp
{
− 1

2
[yi − Cxi]TR−1

v [yi − Cxi]
}

p(xi|Yi−1) =
1√

(2π)n|Pi|i−1|
exp
{
− 1

2
[xi − x̂i|i−1]TP−1

i|i−1[xi − x̂i|i−1]
}

From (80) we have

p(xi|Yi) =
1

p(yi|Yi−1)

1√
(2π)m|Rv|

1√
(2π)n|Pi|i−1|

× exp
{
− 1

2
[yi − Cxi]TR−1

v [yi − Cxi]
}

× exp
{
− 1

2
[xi − x̂i|i−1]TP−1

i|i−1[xi − x̂i|i−1]
}

(82)

Since the Gaussian probability density function has a peak value at the average,
we will find xi that sets the derivative of (82) to zero. Thus

dp(xi|Yi)
dxi

= 0 ⇒ CTR−1
v (yi − Cxi)− P−1

i|i−1(xi − x̂i|i−1) = 0

We denote xi with x̂i|i, therefore

x̂i|i = [P−1
i|i−1 + CTR−1

v C]−1P−1
i|i−1x̂i|i−1 + [P−1

i|i−1 + CTR−1
v C]−1CTR−1

v yi (83)

= [I + Pi|i−1C
TR−1

v C]−1x̂i|i−1 + [I + Pi|i−1C
TR−1

v C]−1Pi|i−1C
TR−1

v yi (84)

=
[
I − Pi|i−1C

T (CPi|i−1C
T +Rv)

−1C
]
x̂i|i−1 (85)

+ Pi|i−1C
TR−1

v (I + CPi|i−1C
TR−1

v)−1yi (86)

=
[
I − Pi|i−1C

T (CPi|i−1C
T +Rv)

−1C
]
x̂i|i−1 (87)

+ Pi|i−1C
T (Rv + CPi|i−1C

T)−1yi (88)

= x̂i|i−1 − Pi|i−1C
T (CPi|i−1C

T +Rv)
−1Cx̂i|i−1 (89)

+ Pi|i−1C
T (Rv + CPi|i−1C

T)−1yi (90)

= x̂i|i−1 + Pi|i−1C
T (Rv + CPi|i−1C

T)−1(yi − Cx̂i|i−1) (91)

= x̂i|i−1 +Ki(yi − Cx̂i|i−1) (92)

where
Ki , Pi|i−1C

T (Rv + CPi|i−1C
T)−1 (93)

32

The coefficient of x̂i|i−1 from (84) to (85) we used the matrix inversion lemma1.
The coefficient of yi from (84) to (86) we used another matrix lemma 2 x̂i+1|i can
be easily found

x̂i+1|i = E[xi+1|Yi] = AE[xi|Yi] +Bui +GE[wi|Yi] (94)

= Ax̂i|i +Bui (95)

= A
[
x̂i|i−1 +Ki(yi − Cx̂i|i−1)

]
+Bui (96)

Pi+1|i can be obtained recursively from the error dynamic equations. We define

error as x̃i|i , x̂i|i − xi and x̃i|i−1 = x̂i|i−1 − xi. Substituting x̂i|i and x̂i|i−1 with
x̃i|i +xi and x̃i|i−1 +xi in the equation (92) respectively and with regard to (76),
yields

x̃i|i = [I −KiC]x̃i|i−1 +Kivi (97)

and in equation (96) with regard to (75)

x̃i+1|i = Ax̃i|i −Gwi (98)

From (97)

Pi|i = E[x̃i|ix̃
T
i|i] = E

[
([I −KiC]x̃i|i−1 +Kivi)([I −KiC]x̃i|i−1 +Kivi)

T
]

= (I −KiC)E[x̃i|i−1x̃
T
i|i−1](I −KiC)T +KiE[viv

T
i]Ki

= (I −KiC)Pi|i−1(I −KiC)T +KiRvKi

= (I −KiC)Pi|i−1 − (I −KiC)Pi|i−1C
TKi +KiRvKi

= (I −KiC)Pi|i−1 − Pi|i−1C
TKi +KiCPi|i−1C

TKi +KiRvKi

= (I −KiC)Pi|i−1 − Pi|i−1C
TKi +Ki(CPi|i−1C

T +Rv)Ki

Ki=Pi|i−1C
T (Rv+CPi|i−1C

T)−1

=⇒ = (I −KiC)Pi|i−1 − Pi|i−1C
TKi + Pi|i−1C

TKi

= (I −KiC)Pi|i−1 (99)

And from (98) and (99)

Pi+1|i = E[x̃i+1|ix̃
T
i+1|i] = E

[
(Ax̃i|i −Gwi)(Ax̃i|i −Gwi)T

]
= AE[x̃i|ix̃

T
i|i]A

T +GE[wiw
T
i]GT

= APi|iA
T +GQwG

T

= A(I −KiC)Pi|i−1A
T +GQwG

T

= APi|i−1A
T +GQwG

T

− APi|i−1C
T (Rv + CPi|i−1C

T)−1CPi|i−1A
T (100)

1Matrix Inversion Lemma: (A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1

in this case A = I, B = Pi|i−1C
T , C = R−1v and D = C

2A(I +BA)−1 = (I +AB)−1A

33

The initial values x̂i0|i0−1 and Pi0|i0−1 are given by E[xi0] and E[(x̂i0 − xi0)(x̂i0 −
xi0)

T], which are a priori knowledge. If we represent the matrix Pi instead of
Pi|i−1, then we can summarize Kalman filter as following:

x̂i+1|i = Ax̂i|i−1 + APiC
T (Rv + CPiC

T)−1(yi − Cx̂i|i−1)

Pi+1 = APiA
T +GQwG

T − APiCT (Rv + CPiC
T)−1CPiA

T

-Note that we didn’t consider the term ‘Bui’ in the first line of summarized Kalman filter, because it is not a

part of our estimation.

Example 5 Consider the state feedback control with fixed terminal state and
problem is same as expressed before, but in this case we compute the states from
Kalman filter,

x[k + 1] =

−0.3252 0.6504 0.6098
0.8130 0 0.8130
0.3659 0.2439 −0.0813

x[k] +

0.1 −0.2
1 0.5
0 1

u[k] +

 0.9
0

−0.255

w[k]

y[k] =

[
1 0 0.15
0 −1 0.2

]
x[k] + v[k]

Suppose that the initial condition be x0 = [−3 5 2]T . The weighting matrices
are given as following:

Q = I, Qf = 5I, R = 10I

We want control to track our desired signal. Reference signals are

xr1[k] = sin(k/10), xr2[k] = sin(k/10 + 1), xr3[k] = sin(k/10)

We generated the wi and vi using MATLAB command normrnd and their
means were zero and their variances were 0.265 and 0.720 respectively, i.e.

wi ∼ N (0, 0.265)

vi ∼ N (0, 0.720)

The tracking states are represented in Figure (16) and control can be expressed
in Figure (17).
The state x1 has tracked its reference signal,well. In the state x2 there is a delay
nearly 15 sample and the state x3 has some decreasing in its amplitude.

4.2 Minimum Variance Finite Impulse Response Filters

There are some discussion about the the FIR filter where matrix A is nonsingular
for simplicity. The FIR filter can be represented by

x̂k|k−1 =
k−1∑

i=k−N

Hk−1yi +
k−1∑

i=k−N

Lk−iui (101)

34

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2
state x1

x1

xref

0 20 40 60 80 100 120 140 160 180 200
−5

0

5
state x2

x2

xref

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

sample

state x3

x3

xref

Figure 16: Tracking state using Kalman filter

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

sample

Optimal Control

u1

u2

Figure 17: Tracking optimal control using Kalman filter

for discrete-time systems, where N is a filter horizon. The FIR filter does not
have an initial state term and the filter gain must be independent of the initial
state information. It is noted that a standard Kalman filter has an initial state
term and the filter gain depends on the initial state information, such as

x̂k|k−1 = Mk−i0xi0 +
k−1∑
i=i0

Hk−1yi +
k−1∑
i=i0

Lk−iui (102)

35

We can observe that FIR filters make use of finite measurements of inputs and
outputs on the most recent time interval [k−N, k], called the receding horizon or
horizon. Since filters need to be unbiased as a basic requirement, it is desirable
that the linear FIR filter must be unbiased. The unbiased condition for the FIR
filter can be

E[x̂k|k−1] = E[xk] (103)

Among linear FIR filters with the unbiased condition, optimal filters will be
obtained to minimize the estimation error variance. These filters are called min-
imum variance FIR (MVF) filters.
We define the output(measurement), control, system noise and measurement
noise in batch form as

Yk−1 , [yTk−N yTk−N+1 · · · yTk−1]T (104)

Uk−1 , [uTk−N uTk−N+1 · · · uTk−1]T (105)

Wk−1 , [wTk−N wTk−N+1 · · · wTk−1]T (106)

Vk−1 , [vTk−N vTk−N+1 · · · vTk−1]T (107)

then measurement can be represent as

Yk−1 = C̄Nxk + B̄NUk−1 + ḠNWk−1 + Vk−1 (108)

where C̄N , B̄N and ḠN can be obtained from (75) and (76) assuming nonsingular
A matrix

xi = A−1xi+1 − A−1Bui − A−1Gwi ⇒ yi = Cxi + vi

⇒ yi = C
[
A−1xi+1 − A−1Bui − A−1Gwi

]
+ vi

⇒ yi = CA−1xi+1 − CA−1Bui − CA−1Gwi + vi

step by step

yk−1 = CA−1xk − CA−1Buk−1 − CA−1Gwk−1 + vk−1

yk−2 = CA−1xk−1 − CA−1Buk−2 − CA−1Gwk−2 + vk−2

= CA−1
[
A−1xk − A−1Buk−1 − A−1Gwk−1

]
− CA−1Buk−2 − CA−1Gwk−2 + vk−2

= CA−2xk − CA−2Buk−1 − CA−2Gwk−1 − CA−1Buk−2 − CA−1Gwk−2 + vk−2

... =
...

yk−N = CA−Nxk − CA−NBuk−1 − CA−NGwk−1

− CA−N+1Buk−2 − CA−N+1Gwk−2

− · · ·
+ vk−N

36

Hence, the matrices C̄N , B̄N and ḠN can be presented by

C̄N =


CA−N

...
CA−2

CA−1

 , B̄N =


−CA−1B −CA−2B · · · −CA−NB

0 −CA−1B · · · −CA−N+1B
0 0 · · · −CA−N+2B
...

...
. . .

...
0 0 · · · −CA−1B



ḠN =


−CA−1G −CA−2G · · · −CA−NG

0 −CA−1G · · · −CA−N+1G
0 0 · · · −CA−N+2G
...

...
. . .

...
0 0 · · · −CA−1G


The noise term ḠNWk−1 +Vk−1 in equation (108) can be shown to be zero mean
with covariance ΨN given by

ΨN , ḠN [diag(Qw Qw · · · Qw︸ ︷︷ ︸
N

)]ḠT
N + [diag(Rv Rv · · · Rv︸ ︷︷ ︸

N

)] (109)

An FIR filter with a batch form for the current state xk can be expressed as a
linear function of the finite measurements Yk−1 (104) and inputs Uk−1 (105) on
the horizon [k −N, k] as follows:

x̂k|k−1 = HYk−1 + LUk−1 (110)

where

H , [HN HN−1 · · · H1]

L , [LN LN−1 · · · L1]

and matrices H and L will be chosen to minimize a given performance criterion
later.
Equation (111) can be written as

x̂k|k−1 = H(C̄Nxk + B̄NUk−1 + ḠNWk−1 + Vk−1) + LUk−1 (111)

Taking the expectation on the both side yields

E[x̂k|k−1] = HC̄NE[xk] + (HB̄N + L)Uk−1 (112)

Satisfying (103); the unbiased condition E[x̂k|k−1] = E[xk], we have

HC̄N = I, HB̄N + L = 0 (113)

substituting in (111)

x̂k|k−1 = xk +HḠNWk−1 +HVk−1 (114)

37

If we define error as
ek , x̂k|k−1 − xk

then it is apparent
ek = HḠNWk−1 +HVk−1 (115)

we should choose the matrix H in such a way that the estimation error ek has
minimum variance. We call this matrix HB, so

HB = arg min
H

E[eTk ek] = arg min
H

E tr[eke
T
k]

= arg min
H

tr[HḠNQNḠ
T
NH

T +HRNH
T] (116)

where QN = [diag(Qw Qw · · · Qw︸ ︷︷ ︸
N

)] and RN = [diag(Rv Rv · · · Rv︸ ︷︷ ︸
N

)].

Solution to (116) involves following lemma.

Lemma 2 Suppose that the following general trace optimization problem is given:

minimmize tr[(HA−B)C(HA−B)T +HDHT]
subject to HE = F

(117)

where C = CT > 0, D = DT > 0, and A, B, C, D, E, and F are constant
matrices and have appropriate dimensions. The solution to the optimization
problem (117) is as follows:

H =
[
F B

] [(ETΠ−1E)−1ETΠ−1

CATΠ−1(I − E(ETΠ−1E)−1ETΠ−1)

]
(118)

where Π , ACAT +D. The matrix H can be shown also

H =
[
F B

] [W11 W12

W T
12 W22

]−1 [
ET

AT

]
D−1 (119)

where

W11 = ETD−1E (120)

W12 = ETD−1A (121)

W22 = ATD−1A+ C−1 (122)

The optimization problem (116) can be matched with this lemma when

A ←− ḠN

B ←− 0
C ←− QN

D ←− RN

E ←− C̄N
F ←− I

In the following theorem, the optimal filter gain HB is represented in an explicit
form.

38

Theorem 1 When (A,C) is observable and N ≥ n, the MVF filter x̂k|k−1 with
a batch form on the horizon [k −N, k] is given as follows

x̂k|k−1 = HB(Yk−1 − B̄NUk−1) (123)

with the optimal gain matrix HB determined by

HB = (C̄T
NΨ−1

N C̄N)−1C̄T
NΨ−1

N (124)

From this theorem , it can be known that the MVF filter (123) processes the
finite measurements and inputs on the horizon [k − N, k] linearly and has the
properties of unbiasedness and minimum variance by design. Note that the op-
timal gain matrix HB (124) requires computation only on the interval [0, N] once
and is time-invariant for all horizons. This means that the MVF filter is time-
invariant. It is a general rule of thumb that, due to the FIR structure, the MVF
filter may also be robust against temporary modeling uncertainties or round-off
errors. An MVF filter may have a faster tracking ability than an IIR filter even
with noises.

An MVF filter can be used in many problems, such as fault detection and
diagnosis of various systems, maneuver detection and target tracking of flying
objects, and model-based signal processing.

We can summarize minimum variance filter(MVF) as following:

x̂k|k−1 = HB(Yk−1 − B̄NUk−1)

HB = (C̄T
NΨ−1

N C̄N)−1C̄T
NΨ−1

N

ΨN = ḠN [diag(Qw Qw · · · Qw︸ ︷︷ ︸
N

)]ḠT
N + [diag(Rv Rv · · · Rv︸ ︷︷ ︸

N

)]

C̄N =


CA−N

...
CA−2

CA−1

 , B̄N =


−CA−1B −CA−2B · · · −CA−NB

0 −CA−1B · · · −CA−N+1B
0 0 · · · −CA−N+2B
...

...
. . .

...
0 0 · · · −CA−1B



ḠN =


−CA−1G −CA−2G · · · −CA−NG

0 −CA−1G · · · −CA−N+1G
0 0 · · · −CA−N+2G
...

...
. . .

...
0 0 · · · −CA−1G



39

Example 6 Consider the state feedback control with fixed terminal state and
problem is same as expressed in previous example, using Kalman filter. Now
we’d like to estimate the state using FIR filter; MVF. The system is modeled as

x[k + 1] =

−0.3252 0.6504 0.6098
0.8130 0 0.8130
0.3659 0.2439 −0.0813

x[k] +

0.1 −0.2
1 0.5
0 1

u[k] +

 0.9
0

−0.255

w[k]

y[k] =

[
1 0 0.15
0 −1 0.2

]
x[k] + v[k]

Suppose that the initial condition be x0 = [−3 5 2]T . The weighting matrices
are given as following:

Q = I, Qf = 5I, R = 10I

We want control to track our desired signal. Reference signals are

xr1[k] = sin(k/15), xr2[k] = sin(k/15 + 1), xr3[k] = sin(k/15)

We generated the wi and vi using MATLAB command normrnd and their
means were zero and their variances were 0.5 and 0.2 respectively, i.e.

wi ∼ N (0, 0.5)

vi ∼ N (0, 0.2)

The horizon length is N = 10. The tracking states are represented in Figure (18)
and control can be expressed in Figure (19).

40

0 20 40 60 80 100 120 140 160 180 200
−2

0

2
state x1

x1

xref

0 20 40 60 80 100 120 140 160 180 200
−2

0

2
state x2

x2

xref

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

sample

state x3

x3

xref

Figure 18: Tracking state using MV filter

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

sample

Optimal Control using MVF

u1

u2

Figure 19: Tracking optimal control using MV filter

We compare the error estimation between Kalman filter and MVF in the Figure
(20) for the recent example.

41

They are very close to themselves, but we can observe that the variation in
Kalman filter is more than MV filter.

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
0

10
5

Error of state x1

ek in Kalman Filter

ek in MV Filter

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−2

10
0

10
2

Error of state x2

ek in Kalman Filter

ek in MV Filter

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−2

10
0

10
2

Error of state x3

ek in Kalman Filter

ek in MV Filter

Figure 20: Error estimation in Kalman Filter and MV filter

42

5 Quadratic Programming in MPC

5.1 Introduction

A convex optimization problem is one of the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p
(125)

where f0, . . . , fm are convex functions. If the objective is quadratic, and the
constraint functions are affine, it is called quadratic programming(QP). Hence a
quadratic program can be expressed in the form

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

Ax = b
(126)

where P is a symmetric3 positive semi-definite matrix, G ∈ Rm×n and A ∈ Rp×n.

5.2 Example of QP

We present two examples as application of QP.First example says a least squares
problem can be represented as a QP.

‖Ax− b‖2
2 = xTATAx− 2bTAx+ bT b (127)

The analytic solution to this simple problem is

x∗ = (ATA)−1AT b (128)

If we have some constraints, the problem change to constrained least squares and
there is no longer a simple analytical solution.

minimize ‖Ax− b‖2
2

subject to li ≤ xi ≤ ui i = 1, . . . , n
(129)

Now, the second example which was introduced by Markowitz is presented:
we consider a classical portfolio problem with n assets or stocks held over a

period of time. We let xi denote the amount of asset i held throughout the
period, with xi in dollars, at the price at the beginning of the period. A wide
variety of constraints on the portfolio can be considered. The simplest set of
constraints is that xi ≥ 0 and 1Tx = B (the budget to be invested and usually

3Our discussion is about the condition when P is symmetric, if it was not symmetric we
compose the symmetric and anti-symmetric part of P and pre and post multiplying by vector
xT and x respectively, causes the part anti-symmetric be zero, i.e.
P = PSymmetric + PAnti−symmetric ⇒ xTPAnti−symmetricx = 0.

43

it is taken to be unit.)
If we take a stochastic model for price changes with p ∈ Rn is a random vector,
with known mean p̄ and covariance Σ.
This classical portfolio optimization problem, is the QP

minimize xTΣx
subject to p̄Tx ≥ rmin

1Tx = 1, x � 0
(130)

We find the portfolio that minimizes the return variance (which is associated
with the risk of the portfolio) subject to achieving a minimum acceptable mean
return rmin, and satisfying the portfolio budget.

5.3 QP as semi-definite programming (SDP)

Semi-definite programming (SDP) can effectively solve many optimization prob-
lems involving LMI. The general form of SDP is an optimization problem of
minimizing a linear function of a variable x ∈ Rn subject to a matrix inequality
and a matrix equality:

minimize cTx
subject to F (x) � 0

Ax = b
(131)

where

F (x) = F0 +
n∑
i=1

xiFi (132)

and Fi ∀i = 1, . . . , n are symmetric matrices. This SDP is a convex optimization
problem. The QP can be transform to SDP as following

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

we consider an upper bound for the objective function, e.g. t;

(1/2)xTPx+ qTx+ r < t

Using Schur complement

t− r − qTx− xT (2P−1)−1x > 0 ⇒
[
t− r − qTx xT

x 2P−1

]
� 0

-Note that P is positive definite

Then the QP can be represented by

minimize t

subject to

[
t− r − qTx xT

x 2P−1

]
� 0

Gx � h

which is a SDP. Note that the equality constraint for each type (either QP or
SDP) is the same, i.e. Ax = b.

44

5.4 QP in Optimal Control

The objective in optimal control usually is a minimization on a quadratic cost
function. The linear time invariant system where is modeled by a linear equality
treats as the equality constraint of QP.

5.4.1 QP with equality constraints

An optimal control problem can be represented by

minimize J(xr, u)
subject to xk+1 = Axk +Buk k = 1, 2, . . . , N − 1

(133)

where

J(xr, u) = 1
2

N−1∑
k=0

[
(xk − xrk)TQ(xk − xrk) + uTkRuk

]
+ 1

2
(xN − xrN)TQf (xN − xrN)

(134)
Here x ∈ Rn, xr ∈ Rn and u ∈ Rl are state, reference state and input respectively.
N express the horizon for the problem.

We assume that the cost function J(xr, u) is strictly convex in the term of
input and state i.e. Q,R > 0. The variables in the problem are u0, . . . , uN−1,
and x1, . . . , xN . The initial state x0 is given. The linear equality constraints are
called the state equations. We define the overall optimization variable z in a
batch form as

z = [uT0 , x
T
1 , . . . , u

T
N−1, x

T
N]T ∈ R(n+l)N (135)

We try to obtain a relation like Ax = b.

x1 = Ax0 +Bu0 ⇒−Bu0 + x1 = Ax0

[
−B I

] [u0

x1

]
= Ax0

x2 = Ax1 +Bu1 ⇒− Ax1 −Bu1 + x2 = 0
[
−A −B I

] x1

u1

x2

 = 0

... =
...

...
...

xN = AxN−1 +BuN−1 ⇒− AxN−1 −BuN−1 + xN = 0
[
−A −B I

] xN−1

uN−1

xN

 = 0

When we collect all the equality constraints we’ll have
−B I 0 0 · · · 0 0 0
0 −A −B I · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · I 0 0
0 0 0 0 · · · −A −B I




u0

x1
...

uN−1

xN

 =


Ax0

0
...
0
0

 (136)

45

The equation (136) can be shown as

Ãz = b̃ (137)

where Ã ∈ RNn×N(n+l) and b̃ ∈ RNn.

We first suppose the regulation problem for simplicity, i.e.

minimize 1
2

N−1∑
k=0

[
xTkQxk + uTkRuk

]
+ 1

2
xTNQfxN

subject to xk+1 = Axk +Buk k = 1, 2, . . . , N − 1

(138)

then the optimization problem can be represented as

minimize 1
2
zTHz

subject to Ãz = b̃
(139)

where

H =


R 0 0 · · · 0
0 Q 0 · · · 0

0 0 R
...

...
...

. . .

0 0 · · · Qf

 (140)

and H ∈ RN(n+l)×N(n+l).
Using Lagrange function to solve this optimization problem we can write

L(z, v) = 1
2
zTHz + vT (Ãz − b̃) (141)

and hence

∇xL(z, v) = Hz + ÃTv = 0

Ãz = b̃ (142)

A point z? ∈ domf is optimal for (139) if and only if there is a v? ∈ RNn such
that

Ãz? = b̃, Hz? + ÃTv? = 0 (143)

This conditions are called Karush-Kuhn-Tucker (KKT) conditions. The set of
n+ p linear equations in the n+ p variables z? and v? is called the KKT system
for the equality constrained quadratic optimization problem (139).
We can write the equation (143) as[

H ÃT

Ã 0

] [
z?

v?

]
=

[
0

b̃

]
(144)

The coefficient matrix in (144) is called the KKT matrix.
There are three statements:

46

• When the KKT matrix is nonsingular, there is a unique optimal pair
(z?, v?).

• If the KKT matrix is singular, but the KKT system is solvable, any solution
yields an optimal pair (z?, v?).

• If the KKT system is not solvable, the quadratic optimization problem is
unbounded below or infeasible.

There are several conditions equivalent to nonsingularity of the KKT matrix:

• P and A have no nontrivial common nullspace

• P is positive definite on the nullspace of A

5.4.2 QP with inequality constraints

When there is an inequality constraints the optimization problem is

minimize 1
2
zTHz

subject to Gz � h

Ãz = b̃
(145)

The inequality constraints Gz � h can be for example an upper or lower bounds
on the variables, e.g. xmin ≤ xk ≤ xmax and umin ≤ uk ≤ umax.

Interior point methods is one of the efficient method for solving QP (or in
general convex optimization) problem that include inequality constraints. We
consider again the optimization problem (125) and present the full KKT condi-
tions as following,

Ax? = b, fi(x
?) ≤ 0, i = 1, . . . ,m

λ? � 0

∇f0(x?) +
∑m

i=1 λ
?
i∇fi(x?) + ATv? = 0

λ?i fi(x
?) = 0, i = 1, . . . ,m

(146)

There is two important interior point methods:

• Barrier Method

• Primal-Dual Method

Primal-dual interior-point methods are often more efficient than the barrier
method, especially when high accuracy is required, since they can exhibit better
than linear convergence.

47

We represent the primal-dual method here.
The modified KKT conditions can be expressed as rt(x, λ, v) = 0 where

rt(x, λ, v) =

∇f0(x) +Df(x)Tλ+ ATv
−diag(λ)f(x)− (1/t)1

Ax− b

 (147)

and t > 0. Here f : Rn → Rm and its derivative matrix Df are given by

f(x) =

f1(x)
...

fm(x)

 , Df(x) =

∇f1(x)T

...
∇fm(x)T


In particular, x is primal feasible, and λ, v are dual feasible, with duality gap
m/t. We call the first, second and third block componnents of rt

rdual = ∇f0(x) +Df(x)Tλ+ ATv (148)

rcent = −diag(λ)f(x)− (1/t)1 (149)

rpri = Ax− b (150)

as dual, central and primal residual.

Now consider the Newton step for solving the nonlinear equations rt(x, λ, v) =
0, for fixed t. We will denote the current point and Newton step as

y = (x, λ, v), ∆y = (∆x,∆λ,∆v)

The Newton step is characterized by the linear equations

rt(y + ∆y) ≈ rt(y) +Drt(y)∆y = 0 (151)

In the matrix form we can write∇2f0(x) +
∑m

i=1 λi∇2fi Df(x)T AT

−diag(λ)Df(x) −diag(f(x)) 0
A 0 0

∆x
∆λ
∆v

 = −

rdualrcent
rpri

 (152)

We define duality gate mentioned before as

η̂ = −f(x)Tλ (153)

We can now represent the basic primal-dual interior-point algorithm from [2] as

48

Algorithm Primal-dual interior-point method.

given x that satisfies f1(x) < 0, . . . , fm(x) < 0, λ � 0, µ > 1, εfeas > 0, ε > 0.
repeat

1. Determine t. Set t := µm/η̂.

2. Compute primal-dual search direction ∆y.

3. Line search and update. i.e. Determine step length s > 0 and set
y := y + s∆y.

until ‖rpri‖2 ≤ εfeas, ‖rdual‖2 ≤ εfeas and η̂ ≤ ε.

In step 1, values of the parameter µ on the order of 10 appear to work well. In
the step 3, we first compute the largest positive step length, not exceeding one,
that gives the next λ or λ+ greater than or equal to zero, i.e. λ+ = λ+s∆λ � 0,
hence

smax = sup
s
{s ∈ [0, 1]|λ+ s∆λ � 0} (154)

= min{1,min{−λi/∆λi|∆λi < 0}} (155)

We start the backtracking with s = 0.99smax, and multiply s by β ∈ (0, 1) until
we have

‖rt(x+, λ+, v+)‖2 ≤ (1− αs)‖rt(x, λ, v)‖2. (156)

where the x+, λ+ and v+ are the next iteration of x, λ and v respectively as for
λ mentioned before.
α is typically chosen in the range 0.01 to 0.1, and β is typically chosen in the
range 0.3 to 0.8.

Now we apply the equation (152) for (145), with this constraints:

xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax

First we change this constraints to standard form in z:

umin − u0 � 0 xmin − x1 � 0

u0 − umax � 0 x1 − xmax � 0

...
...

umin − uN−1 � 0 xN − xmax � 0

uN−1 − umax � 0 xN − xmax � 0

49

since z = [uT0 , x
T
1 , . . . , u

T
N−1, x

T
N]T

umin0 − u0 � 0

u0 − umax0 � 0

xmin1 − x1 � 0

x1 − xmax1 � 0

...

uminN−1
− uN−1 � 0

uN−1 − umaxN−1
� 0

xminN
− xN � 0

xN − xmaxN
� 0

⇒



−I 0 0 0 · · · 0 0 0 0
I 0 0 0 · · · 0 0 0 0
0 −I 0 0 · · · 0 0 0 0
0 I 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 −I 0
0 0 0 0 · · · 0 0 I 0
0 0 0 0 · · · 0 0 0 −I
0 0 0 0 · · · 0 0 0 I




u0

x1
...

uN−1

xN

 �



−umin0

umax0

−xmin1

xmax1

...
−uminN−1

umaxN−1

−xminN

xmaxN



so the left side matrix is G ∈ R2N(n+l)×N(n+l) and the right side matrix is
h ∈ R2N(n+l) and the inequality can be written as Gz � h.
Applying equation (152),since the constraints are linear (or as a suitable word;
affine), ∇2fi = 0. The inequality constraints can be shown as

f1(z) = umin +
[
−I 0 · · · 0

]
z � 0

f2(z) = −umax +
[
I 0 · · · 0

]
z � 0

f3(z) = xmin +
[
0 −I · · · 0

]
z � 0

f4(z) = −umax +
[
0 I · · · 0

]
z � 0

...
...

f2N−1(z) = xmin +
[
0 0 · · · −I

]
z � 0

f2N(z) = −xmax +
[
0 0 · · · I

]
z � 0

In a compact form
f(z) = Gz − h (157)

Then, the term Df(z) is the matrix G which mentioned above. The rest of
variables:

rdual = Hz +GTλ+ ÃTv (158)

rcent = −diag(λ)f(z)− (1/t)1 (159)

rpri = Ãz − b̃ (160)

5.5 QP used in MPC

All the discussion in previous subsections will used in model predictive control.
In the model predictive control we should minimize a quadratic cost function

50

subject to affine equality and inequality constraints. The only difference is that
we should use the optimization on line and correspond to each sample. As
described in the section 1.2 (Concept of MPC), the horizon is finite and all our
decision applies to the first sample. In MPC, at each time k we solve the QP

minimize 1
2
xTk+NQfxk+N + 1

2

∑k+N−1
i=k [xTi Qxi + uTi Rui]

subject to xmin ≤ xi ≤ xmax, i = k + 1, . . . , k +N
umin ≤ ui ≤ umax, i = k, . . . , k +N − 1
xi+1 = Axi +Bui, i = k, . . . , k +N − 1

(161)

where N is the finite horizon.

There are several software packages that include QP solvers

CVXOPT source language: C, Python; API: Python
OpenOp universal cross-platform Python-written numerical

optimization framework;
OOQP C++, interior point algorithm implementation

by Gertz and Wright
QuadProg source language: R (a port from S), algorithm of

Goldfarb and Idnani (1982, 1983)
MOSEK convex problems only
AMPL Modeling Language AMPL (free for students for problems with

up to 300 variables and 300 constraints
Optimization Toolbox MATLAB

The first four solvers are free and others are commercial.
We use CVXOPT solver cvx toolbox to solve QP problems.

51

5.6 Implementation

We first summarize the required relation here:

Ã =


−B I 0 0 · · · 0 0 0
0 −A −B I · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · I 0 0
0 0 0 0 · · · −A −B I

 , b̃ =


Ax0

0
...
0
0



H =


R 0 0 · · · 0
0 Q 0 · · · 0

0 0 R
...

...
...

. . .

0 0 · · · Qf

 , h =



−umin0

umax0

−xmin1

xmax1

...
−uminN−1

umaxN−1

−xminN

xmaxN


rdual = Hz +GTλ+ ÃTv
rcent = −diag(λ)f(z)− (1/t)1

rpri = Ãz − b̃

f(z) = Gz − h H GT ÃT

−diag(λ)G −diag(f(z)) 0

Ã 0 0

∆z
∆λ
∆v

 = −

rdualrcent
rpri


z+

λ+

v+

 =

zλ
v

+ s

∆z
∆λ
∆v


s = 0.99smax, smax = min{1,min{−λi/∆λi|∆λi < 0}} , s := βs

First I present my results of finding the optimal control using this proposed al-
gorithm, then I compare it with CVXOPT solver which solves QP problems.
Indeed, my code is appended in appendix as Example QP solver.

Example 7 We choose a single input system which is modeled as

x[k + 1] =

[
1 0.8
0 −0.7

]
x[k] +

[
0
1

]
u[k]

52

Our performance criterion is

minimize
1

2
xTN

[
5 0
0 5

]
xN +

1

2

N−1∑
i=0

[xTi xi + 10uTi ui]

This example does not use a model predictive control, but this is a LQR prob-
lem. We can extend it and exploit as in MPC. The given initial condition is in[
3 −1

]T
and the time horizon is equal to 50 sample. Inequality constraints can

be express as
−5 ≤ xi ≤ 5,∀i = 1, 2 − 0.8 ≤ u ≤ 0.8

Figures (21) and (22) illustrate the states and optimal control respectively.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3
States in QP problem

sample

x1

x2

Figure 21: States in QP problem with inequality constraints

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0
Optimal control in QP problem

sample

Figure 22: Optimal control of QP problem with inequality constraints

53

Also we use CVXOPT solver to finding optimal control, then Figures (23)
and (24) demonstrate the states and optimal control respectively. We observe
that the result are very close, and the difference may be return to used algorithms
or bad programming.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3
States in QP problem

sample

x1

x2

Figure 23: States in QP problem with inequality constraints using CVXOPT

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0
Optimal control in QP problem

sample

Figure 24: Optimal control of QP problem with inequality constraints using
CVXOPT

Finally, the aim of last example is to find optimal control solution utilizing model
predictive control concept.
If we take receding horizon N = 10 and all the previous example conditions are
satisfied.

54

The states and optimal control are shown in Figures (25) and (26) respec-
tively. For some consideration we use the standard solver CVXOPT for this
problem.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3
States from QP problem used in MPC

sample

x1

x2

Figure 25: States for QP problem in MPC

0 5 10 15 20 25 30 35 40 45 50
−0.5

−0.4

−0.3

−0.2

−0.1

0
Optimal control for QP problem in MPC

Figure 26: Optimal control for QP problem in MPC

The computation is less than infinite horizon, but the settling time is more
than infinite horizon.

55

A Appendix

There are some MATLAB code of examples used in this project.
Example 2:

8/25/10 6:29 AM C:\Users\Public\Documents\Course\Control\Optimal\...\LMI_LQRex1.m 1 of 2

clear all
clc

A=[0.8 0.75; 0 1];
B=[0 -0.2 ;1 0.5];
x0=[-3;5];
R=[10 0; 0 10];
Q=eye(2);
cvx_begin sdp
variables g Y(2,2) L(2,2)
const=[Y, L', (A*Y+B*L)', Y', zeros(2,3);...
 L, R^(-1) ,zeros(2,7); ...
 (A*Y+B*L) , zeros(2,2), Y , zeros(2,5) ;...
 Y , zeros(2,4) , Q^(-1) ,zeros(2,3);...
 zeros(3,8),[g, x0';x0,Y]];
minimize (g)
subject to
const>=0;
cvx_end

H=L*Y^(-1);

x=zeros(2,101);
x(:,1)=x0;
for j=1:100
 u(:,j)=H*x(:,j);
 x(:,j+1)=A*x(:,j)+B*u(:,j);
end

subplot(2,1,1)
stairs([1:30],u(1,1:30),'b')
hold on
stairs([1:30],u(2,1:30),'r')
grid on
title('H_\infty optimal control')
legend('u_1','u_2')
subplot(2,1,2)
stairs([1:30],x(1,1:30),'b')
hold on
stairs([1:30],x(2,1:30),'r')
grid on
title('State')
xlabel('Sample time')
legend('x_1','x_2')

56

8/25/10 6:29 AM C:\Users\Public\Documents\Course\Control\Optimal\...\LMI_LQRex1.m 2 of 2

%norm infty
clear all
clc

A=[0.8 0.75; 0 1];
B=[0 -0.2 ;1 0.5];
Bw=[0.01, -0.032; 0.101, -0.05];
C=[1, -0.1];
D=[0.1, -0.05];
x0=[-3;5];
Wz=eye(2);
cvx_begin sdp
variables g Y(2,2) L(2,2)
const=[-Y, (A*Y+B*L), Bw, zeros(2,1);...
 (A*Y+B*L)', -Y ,zeros(2,2), (C*Y+D*L)'; ...
 Bw' , zeros(2,2), -g*Wz , zeros(2,1) ;...
 zeros(1,2),(C*Y+D*L), zeros(1,2) ,-g];
minimize (g)
subject to
const<0;
cvx_end

57

Example 4:

8/25/10 6:39 AM C:\Users\Public\Documents\Course\Control\Optimal\pro...\ex7_v11.m 1 of 2

clear all
clc

N=5; %receding horizon
NN=120;
t=0:NN+N-1;

A=[1,0.75;0,0.8];
B=[0;1];

x0=[-3; 5];

[nQ mQ] =size(A);
[nR mR] =size(B);

%weight matrices
Q=eye(mQ);
Qf=5*eye(mQ);
R=10*eye(mR);

Bbar=[A^4*B , A^3*B, A^2*B, A*B, B];
Q_N=blkdiag(Q,Q,Q,Q,Q);
H=[zeros(2,5)
 B , zeros(2,4);
 A*B, B , zeros(2,3);
 A^2*B, A*B, B , zeros(2,2);
 A^3*B, A^2*B, A*B, B , zeros(2,1)];

W=H'*Q_N*H;
F=[eye(2);A;A^2;A^3;A^4];

u=zeros(1,NN-1);
x=zeros(2,NN);
xr=zeros(2,NN+N);
xr(1,:)=sin(t/10);
xr(2,:)=sin(t/10+1);
x(:,1)=x0;

for k=1:NN-1
 Xr=[xr(:,k);xr(:,k+1);xr(:,k+2);xr(:,k+3);xr(:,k+4)];
 U=-(W+Bbar'*Qf*Bbar)^(-1)*(H'*Q_N*(F*x(:,k)-Xr)+Bbar'*Qf*(A^5*x(:,k)-xr(:,k+N)));
 u(:,k)=[1 0 0 0 0]*U;
 x(:,k+1)=A*x(:,k)+B*u(:,k);
end

plot(t(1:NN),x(1,:),'r',t(1:NN),xr(1,1:NN),'b')

58

Example 5:

8/25/10 6:42 AM C:\Users\Public\Documents\Course\Control\Optimal\pro...\Kalman1.m 1 of 3

% Kalman Filter
clear all
clc

% A, C, G, Q_w, R_v

%x_i+1=Ax_i+Bu_i+Gw_i
%y_i=Cx_i+v

%fixed terminal state
i_f=200; %step
t=0:(i_f-1);

%problem data
A =[
 -0.3252 0.6504 0.6098;
 0.8130 0 0.8130;
 0.3659 0.2439 -0.0813];

B =[
 0.1000 0.2000;
 1.0000 0.5000;
 0 1.0000];

G=[0.9; 0; -0.255];
C=[1 0 0.15;0 -1 0.2];

x0=[-3;5;2];

[nQ mQ] =size(A);
[nR mR] =size(B);
[nC mC] =size(C);
[nG mG] =size(G);

Q=eye(mQ);
Q_f=5*eye(mQ);
R=10*eye(mR);

w=normrnd(0,0.265,i_f,mG);
v=normrnd(0,0.720,i_f,nC);

Q_w=cov(w);
R_v=cov(v);
%all the x_i are the estimaed state
P=zeros(mQ);

xr=zeros(3,i_f);
xr(1,:)=sin(t/10);
xr(2,:)=sin(t/10+1);
xr(3,:)=sin(t/10);

59

8/25/10 6:42 AM C:\Users\Public\Documents\Course\Control\Optimal\pro...\Kalman1.m 2 of 3

K=Q_f;
g=-Q_f*xr(:,i_f);

x=zeros(mQ,i_f);
u=zeros(mR,i_f);
y=zeros(nC,i_f);

x(:,1)=x0;

for k=1:(i_f-1)
 y(:,k)=C*x(:,k)+v(k);
 u(:,k)=-R^(-1)*B'*(eye(mQ)+K*B*R^(-1)*B')^(-1)...
 *(K*A*x(:,k)+g);
 x(:,k+1)=A*x(:,k)+A*P*C'*(R_v+C*P*C')^(-1)...
 *(y(:,k)-C*x(:,k))+B*u(:,k);

 g=-Q*xr(:,k)+A'*(eye(mQ)+K*B*R^(-1)*B')^(-1)*g;
 K=Q+A'*(eye(mQ)+K*B*R^(-1)*B')^(-1)*K*A;
 P=A*P*A'+G*Q_w*G'-A*P*C'*(R_v+C*P*C')^(-1)*C*P*A';

end

%[Mean, Covariance] = ecmnmle(Data);
subplot(3,1,1)
stairs(x(1,:),'r')
hold on
stairs(xr(1,:),'b')
grid on
legend('x_1','x_r_e_f')
title('state x_1')

subplot(3,1,2)
stairs(x(2,:),'r')
hold on
stairs(xr(2,:),'b')
grid on
legend('x_2','x_r_e_f')
title('state x_2')

subplot(3,1,3)
stairs(x(3,:),'r')
hold on
stairs(xr(3,:),'b')
grid on
legend('x_3','x_r_e_f')
title('state x_3')
xlabel('sample')

stairs(u(1,:),'r')

60

Example 6:

8/25/10 6:45 AM C:\Users\Public\Documents\Course\Control\Optimal\project\MVF1.m 1 of 4

% Minimum Variance Filter (MVF)
clear all
clc

% A, C, G, Q_w, R_v

%x_i+1=Ax_i+Bu_i+Gw_i
%y_i=Cx_i+v

%fixed terminal state
i_f=200; %step
t=0:(i_f-1);

N=10; %Predictive horizon

%problem data
A =[
 -0.3252 0.6504 0.6098;
 0.8130 0 0.8130;
 0.3659 0.2439 -0.0813];

B =[
 0.1000 0.2000;
 1.0000 0.5000;
 0 1.0000];

G=[0.9; 0; -0.255];
C=[1 0 0.15;0 -1 0.2];

%initial condition
x0=[-3;5;2];

[nQ mQ] =size(A);
[nR mR] =size(B);
[nC mC] =size(C);
[nG mG] =size(G);

%constructing \bar{B}_N, \bar{C}_N and \bar{G}_N
BB=B;
for k=1:N-1
 BB=blkdiag(B,BB); % constracting diag(B,B,...,B)
end

CC=C;
for k=1:N-1
 CC=blkdiag(C,CC); % constracting diag(C,C,...,C)
end

GG=G;
for k=1:N-1
 GG=blkdiag(G,GG); % constracting diag(G,G,...,G)

61

8/25/10 6:45 AM C:\Users\Public\Documents\Course\Control\Optimal\project\MVF1.m 2 of 4

end

AAinv=zeros(mQ*N);
Achange_inv=A\eye(mQ); % inv(A)
for k=1:N-1
 Achange_inv=[A\eye(mQ) ,A\Achange_inv]; %[A^(-1), ... , A^(-N)]
end

for k=1:N
 AAinv((k-1)*mQ+1:k*mQ,(k-1)*mQ+1:mQ*N)=Achange_inv(:,1:(N-k+1)*mQ);
end %[A^(-1), A^(-2), ... , A^(-N)]
 %[0 , A^(-1), ...,A^(-N+1)]
 %[]
 %[0 , 0 , ... , A^(-2)]
 %[0 , 0 , ... , A^(-1)]

B_N=-CC*AAinv*BB;
C_N=CC*AAinv(:,(N-1)*mQ+1:N*mQ);
G_N=-CC*AAinv*GG;

%objective function weighting
Q=eye(mQ);
Q_f=5*eye(mQ);
R=10*eye(mR);

%Normal distribution generation
w=normrnd(0,0.5,i_f,mG);
v=normrnd(0,0.20,i_f,nC);

%covariance matrix
Q_w=cov(w);
R_v=cov(v);

%finding \Psi_N
QQw=Q_w;
for k=1:N-1
 QQw=blkdiag(Q_w,QQw); % constracting diag(Q_w,Q_w,...,Q_w)
end
RRv=R_v;
for k=1:N-1
 RRv=blkdiag(R_v,RRv); % constracting diag(R_v,R_v,...,R_v)
end
Psi_N=G_N*QQw*G_N'+RRv;

%MVF matrix
H_B=((C_N'/Psi_N)*C_N)\(C_N'/Psi_N);

%reference signal

62

8/25/10 6:45 AM C:\Users\Public\Documents\Course\Control\Optimal\project\MVF1.m 3 of 4

xr=zeros(3,i_f);
xr(1,:)=sin(t/15);
xr(2,:)=sin(t/15+1);
xr(3,:)=sin(t/15);

%initial state, control, measurement
x=zeros(mQ,i_f);

u=zeros(mR,i_f);
y=zeros(nC,i_f);

Y=zeros(nC*N,1);
U=zeros(mR*N,1);

x(:,1)=x0;

%initialization Y and U
for k=1:N
 Y((k-1)*nC+1:k*nC,1)=y(:,k);
 U((k-1)*mR+1:k*mR,1)=u(:,k);
end

K=Q_f;
g=-Q_f*xr(:,i_f);

for k=1:(i_f-1)

 x(:,k)=H_B*(Y-B_N*U);
 y(:,k)=C*x(:,k)+v(k,:)';

 u(:,k)=-R^(-1)*B'*(eye(mQ)+K*B*R^(-1)*B')^(-1)*(K*A*x(:,k)+g);

 Y(1:(N-1)*nC)=Y(nC+1:N*nC);
 Y((N-1)*nC+1:N*nC)=y(:,k);
 U(1:(N-1)*mR)=U(mR+1:N*mR);
 U((N-1)*mR+1:N*mR)=u(:,k);

 g=-Q*xr(:,k)+A'*(eye(mQ)+K*B*R^(-1)*B')^(-1)*g;
 K=Q+A'*(eye(mQ)+K*B*R^(-1)*B')^(-1)*K*A;

end

%[Mean, Covariance] = ecmnmle(Data);
subplot(3,1,1)
stairs(x(1,:),'r')

63

Example 7a:

8/25/10 6:46 AM C:\Users\Public\Documents\Course\Control\Optimal\pr...\QPsolver.m 1 of 4

% QP solver
%
clear all
clc

% x_{k+1}=Ax_k+Bu_k;
% cost function; J=x_k^TQx_k+u_k^TRu_k

%i_f=20; %step

N=50; %Predictive horizon

%problem data
A=[1 0.8; 0 -0.7];
B=[0; 1];

%initial condition
x0=[3;-1];

[nQ mQ] =size(A);
[nR mR] =size(B);

%objective function weighting
Q=eye(mQ);
Q_f=5*eye(mQ);
R=10*eye(mR);

%%%%% consrtucting \tilde{A} and \tilde{b} %%%%%
Atil=zeros(N*mQ,N*(mQ+mR));
btil=zeros(N*mQ,1);
btil(1:mQ)=A*x0; % just for one step optimization

first_row_Atil=[-B,eye(mQ)];
second_row_Atil=[-A,-B,eye(mQ)]; %Atil=[-B I 0 0 0 0;
 % 0 -A -B I 0 0;
 % 0 0 0 -A -B I];

Atil(1:nR,1:(mQ+mR))=first_row_Atil;
for k=1:N-1
 Atil(k*nR+1:(k+1)*nR, ...
 k*mR+(k-1)*mQ+1:(k+1)*mR+(k+1)*mQ)=second_row_Atil;
end

%%%%% consrtucting H %%%%%
H=zeros(N*(mQ+mR));
for k=1:N
 H((k-1)*mR+(k-1)*mQ+1:k*mR+(k-1)*mQ,...
 (k-1)*mR+(k-1)*mQ+1:k*mR+(k-1)*mQ)=R;
 H(k*mR+(k-1)*mQ+1:k*mR+k*mQ,...
 k*mR+(k-1)*mQ+1:k*mR+k*mQ)=Q;

64

8/25/10 6:46 AM C:\Users\Public\Documents\Course\Control\Optimal\pr...\QPsolver.m 2 of 4

 if k==N
 H(k*mR+(k-1)*mQ+1:k*mR+k*mQ,...
 k*mR+(k-1)*mQ+1:k*mR+k*mQ)=Q_f;
 end
end

%%%%% consrtucting G %%%%%
first_col_G=[-eye(mR);eye(mR)];
second_col_G=[-eye(mQ);eye(mQ)]; %G=[-I 0 ;
 % I 0 ;
 % 0 -I ;
 % 0 I];
G_block=blkdiag(first_col_G,second_col_G);
G=G_block;
for k=1:N-1
 G=blkdiag(G_block,G); %constracting diag(G_block,...,G_block)
end

%%%%% consrtucting h %%%%%
h=zeros(2*N*(mQ+mR),1);
%
% for k=1:N
% bnds = randn(mR,2);
% u_low = min(bnds, [], 2);
% u_up = max(bnds, [], 2);
%
% bnds = 5*randn(mQ,2);
% x_low = min(bnds, [], 2);
% x_up = max(bnds, [], 2);
%
%
% h(2*(k-1)*mR+2*(k-1)*mQ+1:2*(k-1)*mR+2*(k-1)*mQ+mR)=-u_low;
% h(2*(k-1)*mR+2*(k-1)*mQ+1+mR:2*k*mR+2*(k-1)*mQ)=u_up;
% h(2*k*mR+2*(k-1)*mQ+1:2*k*mR+2*(k-1)*mQ+mQ)=-x_low;
% h(2*(k-1)*mR+2*(k-1)*mQ+1+2*mR+mQ:2*k*mR+2*k*mQ)=x_up;
% end

%another deterministic selection for u and x.
for k=1:N
u_low=-0.8*ones(mR,1);
u_up=0.8*ones(mR,1);

x_low=-5*ones(mQ,1);
x_up=5*ones(mQ,1);
h(2*(k-1)*mR+2*(k-1)*mQ+1:2*(k-1)*mR+2*(k-1)*mQ+mR)=-u_low;
h(2*(k-1)*mR+2*(k-1)*mQ+1+mR:2*k*mR+2*(k-1)*mQ)=u_up;
h(2*k*mR+2*(k-1)*mQ+1:2*k*mR+2*(k-1)*mQ+mQ)=-x_low;
h(2*(k-1)*mR+2*(k-1)*mQ+1+2*mR+mQ:2*k*mR+2*k*mQ)=x_up;
end

% initialization z, \lambda and v

65

8/25/10 6:46 AM C:\Users\Public\Documents\Course\Control\Optimal\pr...\QPsolver.m 3 of 4

z=zeros(N*(mQ+mR),1);
lamb=0.1*rand(2*N*(mQ+mR),1); % zeros(2*N*(mQ+mR),1);
v=zeros(N*mQ,1);
y=zeros(N*(mQ+mR)+2*N*(mQ+mR)+N*mQ,1);
deltalamb=-0.001*rand(2*N*(mQ+mR),1);%technical attention!
beta=0.1;
mu=10;
m=length(h);

s=0.999*min(1,min(-lamb./deltalamb));
%nor=zeros(2,N);
%loop
for k=1:40 % may be changed, but we take is instead 'while'
f=G*z-h;
eta_hat=-f'*lamb;

t=mu*m/eta_hat;

r_dual=H*z+G'*lamb+Atil'*v;
r_cent=-diag(lamb)*f-(1/t)*ones(2*N*(mQ+mR),1);
r_pri=Atil*z-btil;

r_t=[r_dual;r_cent;r_pri];

KKT_mat=[H,G',Atil';
 -diag(lamb)*G,-diag(f),zeros(2*N*(mQ+mR),N*mQ);
 Atil,zeros(N*mQ,2*N*(mQ+mR)), zeros(N*mQ)];

deltaY=-KKT_mat\r_t;
y=y+s*deltaY;

z=y(1:N*(mQ+mR));
lamb=y(N*(mQ+mR)+1:3*N*(mQ+mR));
v=y(3*N*(mQ+mR)+1:3*N*(mQ+mR)+N*mQ);

s=beta*s;
%nor(1,k)=norm(r_pri);
%nor(2,k)=norm(r_dual);
end

x=zeros(mQ,N);
u=zeros(mR,N);
%pull out u and x from z;
for k=1:N
u(:,k)=z((k-1)*mR+(k-1)*mQ+1:(k-1)*mR+(k-1)*mQ+mR);
x(:,k)=z((k-1)*mR+(k-1)*mQ+1+mR:(k-1)*mR+(k-1)*mQ+mQ+mR);
end
x(:,2:N+1)=x;
x(:,1)=x0;
plot(1:N+1,x(1,:),1:N+1,x(2,:))

66

Example 7b:

8/25/10 6:47 AM C:\Users\Public\Documents\Course\Control\Optimal...\QPsolverCVX.m 1 of 1

clear all
clc

N=50;
%A=[1 0.8; 0 0.7];
%B=[0; 1];

A=[1 0.8; 0 -0.7];
B=[0; 1];

x0=[3;-1];

cvx_begin
variables x(2,N) u(N-1)
J=x(:,1)'*x(:,1) +10* u(1)'*u(1);
for j=1: (N-1)
 J=J+x(:,j)'*x(:,j) + 10*u(j)'*u(j);
end

J=J+x(:,N)'*[5,0;0,5]*x(:,N);

minimize (J)
subject to
x(:,1)==x0;

for j=1:(N-1)
x(:,j)>= -5*ones(2,1);
x(:,j)<= 5*ones(2,1);
u(j)>= -0.8;
u(j)<= 0.8;
end

for j=1:(N-1)
x(:,j+1)==A*x(:,j)+B*u(j);
end

cvx_end

stairs(1:N,x(1,1:N),'b')
hold on
stairs(1:N,x(2,1:N),'r')
title('States in QP problem')
xlabel('sample')
legend('x_1','x_2')

67

Example 7c:

8/25/10 6:48 AM C:\Users\Public\Documents\Course\Control\Optimal\project\MPCcvx.m 1 of 2

clear all
clc

i_f=50;
N=10;

A=[1 0.8; 0 -0.7];
B=[0; 1];

x0=[3;-1];
x00=x0; %save x0
xx=zeros(2,i_f);
uu=zeros(1,i_f);

for k=1:i_f

 cvx_begin
 variables x(2,N) u(N-1)
 J=x(:,1)'*x(:,1) +10* u(1)'*u(1);
 for j=1: (N-1)
 J=J+x(:,j)'*x(:,j) + 10*u(j)'*u(j);
 end

 J=J+x(:,N)'*[5,0;0,5]*x(:,N);

 minimize (J)
 subject to
 x(:,1)==x0;

 for j=1:(N-1)
 x(:,j)>= -5*ones(2,1);
 x(:,j)<= 5*ones(2,1);
 u(j)>= -0.8;
 u(j)<= 0.8;
 end

 for j=1:(N-1)
 x(:,j+1)==A*x(:,j)+B*u(j);
 end
 cvx_end

 uu(k)=u(1);
 xx(:,k)=x(:,2);
 x0=x(:,2);
end

xx(:,2:i_f+1)=xx;
xx(:,1)=x00;

stairs(0:i_f,xx(1,:),'b')

68

References

[1] W. H. Kwon and S. Han. Receding Horizon Control. Springer-Verlag, 2005.

[2] Stephan Boyd Convex Optimization Cambridge University Press, 2004

[3] Y. Wang and S. Boyd. Fast model predictive control using online optimiza-
tion. In Proceedings IFAC World Congress, pages 6974–6997, July 2008.

[4] M. Grant and S. Boyd. CVX: Matlab software for dis-
ciplined convex programming (web page and software).
http://www.stanford.edu/ boyd/cvx/, July 2008.

[5] Eduardo F. Camacho and Carlos Bordons Model Predictive Control
Springer-Verlag London, 1999.

[6] Ton J.J. van den Boom and Anton A. Stoorvogel Model Predictive Control
DISC Course, Lecture Notes, Delft Center for Systems and Control Delft
University of Technology, 2010

[7] P.E. Orukpe Basics of Model Predictive Control Imperial Col-
lege,London,2005

[8] Donald E. Kirk Optimal Control Theory Mineola, New York, 1970

[9] Carsten Scherer and Siep Weiland Linear Matrix Inequalities in Control
Delft Center for Systems and Control Delft University of Technology, 2009

[10] H. E. Krogstad Quadratic Programming Basics TMA 4180 Optimeringsteori
Spring 2005/Rev. 2008

69

