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Abstract: Presence of nonlinearities, e.g., stiction, and
deadband in a control valve limits the control loop
performance. Valve stiction is one of the most common causes
of oscillations in industrial process control loops. In this work,
we propose a novel approach to estimate the valve position
using unknown input estimation. The estimation algorithm is a
numerical method based on maximum likelihood. With
estimated valve position, we can detect and also quantify the
amount of stiction. The main advantages of the proposed
method are numerical stability, computational efficiency. The
efficiency of the method has been demonstrated through
simulation examples.
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1. Introduction

The presence of oscillations in a control loop enhances
the variability of the process variables hence creating
inferior quality products, higher rejection rates, increased
energy consumption and reduced average throughput.
Surveys in the process industry have revealed that almost
30% of control loops are oscillating [1]. Among the many
types of nonlinearities in control valves, stiction is the
most commonly encountered in the process industry. The
detection and quantification of valve stiction in industrial
process control loops is thus important. Conventional
invasive methods such as the valve travel test can easily
detect stiction, but are expensive and tedious to apply to
hundreds of valves to detect stiction. Thus there is a clear
need in the process industry for a non-invasive method
that can not only detect but also quantify stiction so that
the valves that need repair or maintenance can be
identified, isolated and repaired [1], [2].

A number of researchers have studied the valve
stiction problem and suggested methods for detecting it.
Horch presented two more methods for detecting stiction
in oscillating loops [3]. The first method detected valve
stiction by analyzing the cross-correlation function (CCF)
between the controller output and the plant output. This
method cannot be applied to integrating processes, for
which in a later work Horch and Isaksson [4] have
presented another method based on the distribution of the
second derivative of the pv signal. [5], [6] and [7] have
presented data based methods based on the qualitative

shapes in the time trends of the op and pv signals. In
another study, Choudhury et al. [8] presents a method for
detecting and quantifying stiction for linear processes
using the pv and op data. This method is based on the fact
that for a linear process under closed loop control, a
sticky valve would induce nonlinearity in the pv and op
signals and hence stiction can be detected based on the
nonlinearity in the control error signal. The disadvantage
of this quantification methodology is that the width of the
ellipse will be dependent on the effect of loop dynamics
on the pv.

Several authors have proposed model-based
approaches for stiction detection and quantification.
Stenman et al. [9] has presented a model-based approach
based on ideas from the field of change detection and
multi-model mode estimation. Stiction detection was
performed through a combined identification of the
process model parameters and the mode sequence. [8],
[10] and [11] have proposed model-based methods where
a linear process with a sticky valve is considered to be a
Hammerstein system, the sticky valve being the nonlinear
element in the system. Chitralekha et al. [12] consider the
problem of estimating the valve position as an unknown
input estimation problem. But, standard Kalman filter
limits process dynamic and reduces flexibility of this
method.

In this paper, a model-based approach to estimate
unknown input is proposed. An extended Kalman filter is
used to estimate the state and unknown input from a
noisy measurement set.

The stiction model of Choudhury et al. [8] is discussed
in Section 2. In Section 3, we explain the formulation of
the stiction detection problem as an unknown input
estimation problem for suitable estimate of valve position
mv—op data plot and how stiction quantification can be
carried out using the plot. In Section 4, we emonstrate
the application of the method on simulated examples. We
show through simulation how the quantification is not
significantly affected by model plant, external
disturbances and controller tuning.



2. Modeling Valve Stiction

Fig.l shows the schematic operation diagram of a
sticky valve, where S denotes the deadband plus
stickband, and J the stick band. Some of definitions of
stiction can be found in [1], [13].

2.1  Physics-based Stiction Model
For a pneumatic sliding stem valve, the force-balance
equation based on Newton’s second law can be written
as:
d’x
dt’
where M is the mass of the moving parts, x is the

:Zforces:Fa+F,‘+F,‘+Fp+Fi (1)

relative stem position, F, = 4u is the force applied by

pneumatic actuator, where A4 is the area of the diaphragm
and u is the actuator air pressure or the valve input signal,

F, =—kx is the spring force, where k is the spring

constant, Fy ==4,4p is the force due to fluid pressure

drop, where Ap is the plug unbalance area and A p is the

fluid pressure drop across the valve, F; is the extra force
required to force the valve to be into the seat and Fyis the
friction force. One of the commonly used friction models
is the Karnopp model. It includes static and moving
friction. The disadvantage when applying the friction
model to a generic valve is the need to specify a large set
of parameters. In order to overcome this disadvantage
many researchers developed different kinds of empirical
data-driven stiction models.

2.2 Data-driven Stiction Modeling

For a dynamic stiction model, the challenges are (i) to
model the tendency of the valve to stay moving once it
has started until the input changes direction or the
velocity goes to zero, and (ii) to include the effects of
deadband and the slip jump.

A valve stiction model was proposed by Kano et al.
[14]. The input and output of this valve stiction model are
the controller output and the valve position, respectively.
The controller output is transformed to the range
corresponding to the valve position in advance. This
valve stiction model has several advantages: (i) It can
cope with the stochastic input as well as the deterministic

input. (ii) u_(¢), which is the controller output at the

moment the valve state changes from moving to resting,
can be updated at appropriate timings by introducing the
valve state. (iii) It can change the degree of stiction
according to the direction of the valve movement.

Based on the typical input-output behavior of a sticky
valve, He et al. proposed a new valve stiction model [15]
which is simpler and more straightforward in logic. If
desired, the saturation constraint can be easily added to

u (t) after the model calculation.
Choudhury et al. proposed a valve stiction model in
[13], where the control signal is translated to the

percentage of valve travel with the help of a linear look-
up table. The model consists of two parameters, namely,

deadband plus stickband S, which is specified in the input
axis, and slip jump J, which is specified in the output
axis. Two-parameter data-driven Choudhury’s stiction
model algorithm can be described as:
* The controller output (mA) is converted to valve travel
percentage using a look-up table.
* The first two branches in the model flow chart check if
the upper and the lower bounds of the controller output
are satisfied.
» If the signal is within the 0 to 100% range, the
algorithm calculates the slope of the controller output
signal.
* Next, the change of the direction of the slope of the
input signal is taken into consideration. If the sign of the
slope changes or remains zero for two consecutive
instants, the valve is assumed to be stuck and does not
move.

* For the case where the input signal changes direction, if
the cumulative change of the input signal is more than the
amount of the deadband plus stickband (S), then the valve
slips and starts moving.

» For the case when the input signal does not change
direction, if the cumulative change of the input signal is
more than the amount of the stickband (J), then the valve
slips and starts moving. This takes care of the case when
the valve sticks again while travelling in the same
direction.

* The output is calculated using the equation:

y(k)=x(k)—sign(v —new )(S —J)/2 (2)

* The parameter J is an output quantity measured on the
vertical axis. It signifies the slip-jump start of the control
valve immediately after it overcomes the deadband plus
stickband. It accounts for the offset or deviation between
the valve input and output signals.

* Finally, the output is converted back to a mA signal
using a look-up table based on characteristics of the valve
such as linear, equal percentage or square root, and the
new valve position is reported.
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Fig. 1: Typical input-output characteristic of a sticky valve



3. Problem Formulation

Consider the closed loop block diagram as shown in
Fig. 2, where a sticky valve is included between the
process and the controller block. Typically, the controller
will be P or PI. For a normal valve, the mv and op signal
will be equal at all times [12]. But if the valve is sticky,
then there will be a clear difference between the two
signals. In such a situation the valve acts like a nonlinear
element transforming the op signal. If we model this
transformation of the op by adding an additive, nonlinear,
external signal which enters the loop just after the
controller output, we get an equivalent representation as
shown in Fig. 3 with the valve block replaced by an
external unknown input signal [12], [16].

In order to estimate unknown input (MV signal) with
the help of extended Kalman filter, assume that the
process can be described as a singular linear discrete time
system with the following state-space representation

e(k +1)x (k +1)=a(k)x (k)+b,(k u (k) 3)
+b, (k)i (k)+by(kw (k)

vk +)=c(k +Dx(k +1)+d,(k +Du(k +1) o
+d,(k +Du(k +1)+d, (kW (k)

Where x(k) is the process state, u(k)is the output
controller, and y(k) is the measurement available from
the process. The process noise w (k) and measurement
noise v (k) are assumed to be Gaussian with variance Q
and R, respectively. With the above system, we can use
the method of unknown input estimation proposed by
[17] and [18] in order to obtain an estimate of (k) . This
system can be written as a singular system without
unknown input:

x(k+D)] x (k)
[e(k +1) o]{ﬂkﬂ)}_[a(k) bz(k)]{li(k)} (5)

+b, (K Ju (k) +by(kw (k)

x(k+1)
(6)

v (k +1)=[c(k +1) d,(k +1)]L~(k o)
+d,(k +Du(k +1)+d;(k W (k)

Being full column rated of the following matrix, is
estimability condition of the unknown input

e(k +1) 0 ™
c(k +1) d,(k +1)

Unknown input can be estimated using the following
numerical algorithm

X (k+1)=M (k +1){ A(K)X (k)+b,(k)u (k) }

y(k +1)—d, (k +uk +1) ©
A(k)=[a(k) b,(k)]
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Xk +1):L~(k +1)

w

Set-point 3 i T
_ Controller | op Sticky | M¥ Process pv
e c u | vave [ Vv P + ’
u
- \'
Measured pv
4—{‘. Sensor
Fig. 2. Close loop with sticky valve
Unknown Input
~
I/t Disturbance
w
Set-point

o

Measured pv

v Sensor

Fig. 3. Equivalent loop of sticky valve and unknown input

Where

_[p T R, (k) 0

M (k+D)=[R,"(k+1) 0|0, (k +1)[ o dﬁ(k)}

In this equationR,, O, and R,, O, are QR
decomposition given by

-1
Rb,,(k)E(k +1) 0.k +1) R, (k +1)
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[4(k)S (k) =b,(k)]=[R, (k) 0]Q, (k)
E(k +1)=[e(k +1) 0]
Cky=[ck) d,(k)]

Where covariance matrix square S(k) can be obtained
from the following equation

S(k+1)=R,"(k +1) (10)

Therefore, state (¥(k)) and unknown input (i (k))

estimations can be derived. The process in valve stiction
problem is non-singular; so, e(k)=1.

4. Simulation Study

In this section, we demonstrate the efficacy of the
proposed stiction detection and quantification algorithm
through simulation examples, where the stiction is
introduced in the closed loop simulation studies using the
stiction model proposed in [13].

4.1  Detection and Quantification of Stiction

We consider a simple integrating process with the
process gain being unity (i.e., G(s) = l/s) , controlled
by a discrete PI controller by the transfer function

1
KC(1+—4)) ,where K. =0.1 and 7, =0.01,

7,(1-z

1
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Fig. 4. Simulated data set with stiction

was used in the simulation. A sampling time of 1s was
used in all the simulation studies.

The two parameter stiction model was included in
between the process and the controller in closed loop
simulation. We use the parameter values of S =4 and
J =2 in the stiction simulation block. Fig. 4 shows the
time trend of the pv and op signals, after the close loop
system has attained steady state. A Gaussian white noise
with a variance of 0.01 was introduced as disturbance in
the simulation. The state noise variance (Q) and
measurement noise variance (R) values of 1e-5 and 1e-3,
respectively, were used in the estimator. In Fig. 5 we plot
the true mv—op plot. Note that in this simulation the true
mv is naturally available.

In Fig. 6 we plot estimated mv-op plot patternand
hence we can detect stiction visually from this figure. As
mentioned earlier, the width of the mv—op plot quantifies
stiction. We denote the estimated width as S . For the
quantification part it is only the width of the mv—op plot
that is of interest and in the proposed scheme, if the
model is fairly precise, then S will be close to S. In the
simulated example, the estimated width matches the
parameter S exactly and thus we can conclude that the

quantification is accurate.
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Fig. 6. Estimated mv-op plot for S=4 and J=2

To investigate further, a first order plus time delay
(FOPTD) system is considered to be simulated using the
proposed method. The transfer function of the process is
3 e —-10s (1 1)
10s +1

This system is controlled by a PI controller whose
transfer function can be written in the continues state as

G,(s)=

Gr(s):0.2(1+1j (12)
' 10s

In this case, we use the parameter values of S=5 and
J=2 in the stiction simulation block. Sampling time, state
noise and measurement noise variance values are the
same as before.

Fig. 7 shows input-output behavior of a sticky valve
with FOPTD process. mv-op is depicted in Fig. 7a and
Fig. 7b estimates mv-op plot.

Simulation results demonstrate the ability of this
method in estimating stiction parameters with delay in the
process.

33 Oscilation Occur Due to Reasons Other Than
Stiction

This method can also detect oscillation other than
stiction. A very common scenario is when an external
oscillatory disturbance enters the closed loop. In this
section, we demonstrate through a simulation example
how the proposed algorithm will be able to correctly
identify that the valve in a closed loop is normal when an
external disturbance is causing persistent oscillations in
the loop. If the algorithm had lacked this aspect, there
would be false alarms whereby a normal valve will be
wrongly reported as a sticky valve.

We removed the stiction block from the Simulink
model to emulate the case of a normal valve. Then, we
consider the same integrating process discussed earlier. In
order to introduce an external oscillatory disturbance, we
add a sinusoidal disturbance with amplitude 1 and
frequency 0.05 rad/s along with a random noise
disturbance in the closed loop simulation. The controller
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tuning settings are the same as before. Due to the
oscillatory disturbance, the pv and op variables oscillate.

The plot of the estimated mv vs. op is shown in Fig. 8.
This pattern is clearly an ellipse and is very different
from that of a sticky valve. Hence, we can diagnose that
the oscillations are not due to stiction, but are caused by
some oscillatory external disturbance.

An aggressively tuned PID controller can be a cause
for oscillations in many industrial control loops. In such a
case a good valve stiction detection algorithm should
confirm that the root cause of the oscillations is not valve
stiction. We will demonstrate here the efficacy of the
current methodology by deliberately introducing
aggressive tuning specifications into the simulated
control loops considered earlier. The controller tuning
parameters and the process model transfer functions used
to generate oscillatory closed loop data are given in
TABLE 1.

TABLE I. Aggressive Controller Tuning Parameters

Process K. 1z,
1
- 0.5 0.1
s

The stiction block was removed from the simulation so
that the valve can be considered to be a normal one. Also
for this case the external oscillatory disturbance is
removed. With a normal linear valve without oscillatory
disturbance in closed loop, we would expect the mv—op
plot to be a straight line without any stiction pattern being
depicted. Fig. 9 shows the estimated and the true mv—op
plots for the two processes. From the figure, we can
observe that the estimated mv vs. op line coincides with
the actual one and is clearly showing a linear dependence
between the two. Thus, the absence of any stiction pattern
in the estimated mv—op plot clearly shows that the valve
is normal.

504

5031

o m
=] a
o o

Estimated mv

. L L L L L
496 497 498 499 50 501 502 503 504

controller output(op)

Fig. 8. Diagnosis of external oscillatory disturbance
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Conclusions

In this paper, a novel method for detection and
quantification of wvalve stiction has been proposed.
According to the numerical algorithm of the extended
Kalman filter, a suitable estimation of the valve position
signal is acquired. Hence, stiction parameters are
calculated simply and accurately through mv-op plot. A
square root numerical algorithm obtained for
implementation of unknown input estimation. In addition,
the proposed method has the ability of differentiating
between stiction and other cause of oscillation. The
validity of the proposed method has been demonstrated
by several simulation results.
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